>Approach to Resuscitation in Severe Calcium Channel Blocker Poisoning

Medical Student Clinical Pearl

J.L. Dobson

Faculty of Medicine
Memorial University of Newfoundland
M.D. Candidate 2020

Reviewed and Edited by Dr. Luke Taylor and Dr. David Lewis

and Liam Walsh. Pharmacist HHN


 

Introduction:

Calcium channel blockers (CCBs) have multiple clinical uses, including the management of hypertension, angina, and cardiac arrhythmias. [1] While CCBs are no longer the most widely prescribed antihypertensive as they were in the 1990s, their prevalence remains high. [2] This along with the existence of both immediate release and long-acting forms poses a challenge for the Emergency Physician faced with a case of CCB poisoning.

Physiology:

Myocardium in the sinoatrial and atrioventricular nodes uses the slow action potential created by calcium currents to conduct. CCBs act on this tissue by inhibiting this current, thus slowing conduction through the SA and AV nodes. This results in a decreased heart rate, prolonged PR intervals, and lengthened refractory periods through the AV node. Conversely, they also inhibit calcium flow in smooth muscle, resulting in coronary and peripheral artery dilation. This ultimately provides the mechanism for reflex tachycardia, increased AV conduction, and improved myocardial contractility. [3]

Adverse reactions to the physiological effects of CCBs include vasodilatory effects (peripheral edema, headache, palpitations), gastrointestinal effects (nausea, diarrhea, constipation), and negative inotropic effects (hypotension, bradycardia). [4]


 

Case Report:

A 80-year-old male is brought in to Trauma by ambulance with hypotension, bradycardia, and an altered level of consciousness. Report from EMS reveals the patient called about half an hour prior stating that he had taken medications in an attempt to commit suicide. Upon arrival, the pt was alert and oriented, and endorsed taking an unknown quantity of clonazepam and citalopram, and a deficit of up to four grams of Diltiazem was noted from his medications. He denied further substance use. Though initially stable, the patient deteriorated rapidly upon arrival to the emergency department.

In the Emergency Department, initial vitals revealed a BP of 88/68, P of 52 bpm and SPO2 of 93% on RA and a BG of 15. As such nasal prongs were placed and she was immediately given atropine as well as push dose epinephrine. Within ten minutes, there was further decline in mental status of the patient corresponding to a blood pressure of 83/61 and a heart rate persisting in the low 40s bpm. He was successively given further epinephrine, atropine and calcium chloride while toxicology was contacted. Despite recurrent doses of epinephrine and atropine, the patient remained profoundly hypotensive and bradycardic. Insulin (Humulin R) and dextrose were started at 0.5U/kg/hr with a 1U/kg bolus. This infusion was titrated up every thirty minutes with minimal improvement in vitals. At this point, remaining bradycardic at 37bpm, intralipid therapy was deemed necessary and so a bolus of 105mL was given. Having received epinephrine bolus along with a 0.2mcg/kg/hr infusion, maximum dose of atropine, 3g of Calcium chloride, with minimal clinical improvement cardiac pacing was initiated. Once good electrical and mechanical capture were achieved the patient underwent and RSI with ketamine and rocuronium. Once stabilized, he was transferred to ICU for further management. In ICU, the patient had a transvenous pacemaker floated successfully followed by a transitioning off the epinephrine to norepinephrine and vasopressin. Intralipid infusion was started and the insulin and glucose therapy was titrated up to a maximum of 4U/kg/hr. The patient unfortunately did not tolerate whole bowel irrigation. Despite the critical nature of their condition, the patient did slowly improve and pressors were weaned.


 

Discussion:

History & Primary Survey

This patient experienced negative inotropic effects of the extended release calcium channel blocker, resulting in cardiogenic shock. Ingestion of more than 5-10 times the usual dose of CCB results in severe intoxication: this patient was thought to have consumed four grams of Diltiazem, over eleven times the maximum recommended dose. [5] While any CCB can result in hypotension, knowledge of which CCB was taken is useful to set expectations for the patient’s progression: unlike dihydropyridine-type CCBs which would more likely present with reflex tachycardia, non-dihydropyridine CCBs like verapamil and diltiazem result in bradycardia. [6] Another crucial point in the primary survey is that, due to the neuroprotective effects of CCBs, mental status may initially be preserved until cerebral perfusion is severely affected. [5]

Initial Resuscitation

While the patient may initially be able to maintain their airway, mental status and vitals may deteriorate rapidly. [5] It is important to note that like any critical ill patient,  intubation may result in a further drop in heart rate and blood pressure via vagal stimulation. It is crucial to have adequate resuscitation prior to intubation. IV crystalloid fluids , IV atropine (up to three 1mg doses), as well as push dose epinephrine are interventions that can be used quickly at bedside to maintain circulation and heart rate while further investigations and treatments can be organized. [5,8]


Specific Treatments

For a severe CCB poisoning in which hypotension is refractory to IV fluids and atropine, all of the following treatments should be administered simultaneously. If the severity is milder, these treatments should be approached in a stepwise fashion, progressing to the next if the preceding treatment is ineffective. [5]

IV Calcium salt:

As a first line recommendation, a calcium chloride bolus (10-20mL 10%) followed by a continuous infusion (0.5 mEq Ca2+/kg/hr) or the equivalent of calcium gluconate is recommended, though often ineffective. [5] Mortality has been shown to be reduced with its administration, and hypercalcemia occurs only rarely. [7] [8]

IV Insulin with dextrose:

High-dose insulin therapy (1 u/kg bolus and 0.5 u/kg/hr infusion up to 10 u/kg/hr) has been shown to be safe and effective at improving hemodynamics, though response is delayed for 30-60 minutes. [5,7] It should be used with calcium and a vasopressor in the presence of myocardial dysfunction. [8] Blood glucose levels should be monitored every 15-30 minutes for hypoglycemia, and 50mL boluses of dextrose (D50W) given accordingly to maintain levels above 8.25 mM. [5] Hypokalemia is another risk of insulin therapy, therefore electrolytes should be monitored every 30 minutes and 20 mEq of potassium chloride given if needed. [5,7]

IV Vasopressor:

Administration of IV epinephrine has shown improvement in cardiac output. [7,8] In the setting of severe CCB poisoning, doses as high as 150mcg per minute of epinephrine may be needed. It is suggested to start the infusion at 2mcg per minute and titrate up to a systolic blood pressure of 100 mmHg, or a MAP of 65 mmHg. [5] These higher doses may result in a large improvement in patient MAP with minimal change in heart rate.

IV Lipid emulsion therapy:

If the patient is refractory to first-line treatments above, or upon consultation with medical toxicology centre, IV lipid emulsion therapy may be recommended. [8] Most commonly, this is given as a bolus of 1.5 mL/kg of 20% lipid emulsion, repeated up to every three minutes for three total boluses. An infusion of 0.25-0.5 mL/kg/minute may be started. [5] Complications of this treatment are still being studied.

Other considerations:

Studies most often show improvement of hemodynamics and no adverse effects with temporary cardiac pacing for bradycardia refractory to first-line treatments. [7,8] Extracorporeal membrane oxygenation may also be necessary if the patient is near cardiac arrest and remains refractory to previous treatments. [8] Dialysis provides no benefit. [5]

Decontamination:

If the patient is asymptomatic and/or hemodynamically stable, 50g of activated charcoal should be given. In the case of ingestion of extended-release CCBs, whole bowel irrigation should be performed regardless of the presence of symptoms. An asymptomatic patient should be monitored for 6-8 hours for immediate release and 24 hours for extended release forms. [5,8]

Investigations:

ECG may reveal PR interval prolongation due to CCB actions on the SA and AV nodes. Frequent blood glucose measurements are crucial to monitor for the effects of insulin treatment and the need for glucose replacement. Serum electrolytes, notably potassium levels, must be assessed for developed hypokalemia secondary to insulin treatment.



Conclusion:

We present a case and review the physiology of a severe calcium channel blocker poisoning. Key considerations in managing a CCB poisoning include specific dosage and form, initial resuscitation with a low threshold for intubation, fluids, and atropine. Further treatments will be required based on severity, such as intravenous calcium, insulin with dextrose, and lipid emulsion therapy, all of which should be initiated promptly if there is concern for massive over dose and patient declining. Other considerations include the need for further vasopressors and temporary cardiac pacing.

 


FIGURE: Society of Critical Care Medicine key recommendations for management of CCB poisoning. Source: “Experts consensus recommendations for the management of calcium channel blocker poisoning in adults.” Crit Care Med. 2017;45(3):e306-e315. DOI: 10.1097/CCM.0000000000002087


 

References:

[1] Elliott, WJ & Ram,CV. J Clin Hypertens (Greenwich). 2011;13:687–689.

[2] Eisenberg, MJ; Brox, A. & Bestawros, AN. Am J Med. 2004;116(1):35-42.

[3] Singh, BN; Hecht, HS; Nademanee, K. & Chew, CYC. Progress in Cardiovascular Diseases. 1982;15(2):103-132.

[4] Russell, RP. Hypertension. 1988;11(3):II42-44.

[5] Barrueto, F. “Calcium channel blocker poisoning.” UpToDate. 2019.

[6] Hofer, CA; Smith, JL & Tenholder, MF. Am J Med. 1993;95(4):431.

[7] St-Onge, M; Dubé, PA; Gosselin, S; Guimont, C; Godwin, J; Archambault, PM; Chauny, JM; Frenette, AJ; Darveau, M; Le Sage, N; Poitras, J; Provencher, J; Juurlink, DN & Blais, R. Clin Toxicol (Phila). 2014;52(9):926.

[8] St-Onge, M; Anseeuw, K; Cantrell, FL; Gilchrist, IC; Hantson, P; Bailey, B; Lavergne, V; Gosselin, S; Kerns, W; Laliberté, M; Lavonas, EJ; Juurlink, DN; Muscedere, J; Yang, CC; Sinuff, T; Rieder, M & Mégarbane, B. “Experts consensus recommendations for the management of calcium channel blocker poisoning in adults.” Crit Care Med. 2017;45(3):e306-e315.

Print Friendly, PDF & Email