Trauma Reflections – June 2020

Thanks to Dr. Andrew Lohoar and Sue Benjamin for leading the discussions this month


 

Major points of interest:

 

A) How are we doing with calling Trauma Codes for qualifying cases?

In the past year, for cases qualifying for trauma team activation, the rate of calling ‘Trauma Codes’ has fallen to 66%.

If a Trauma Code was called, RN trauma note use increased to 85% and time to disposition to an ICE setting was significantly decreased.

 

Please review the attached updated simplified activation criteria – notable changes are:

  • Removal of minor head injuries without signs or symptoms on anticoagulants under “D”
  • Addition of pulseless extremity under “C”


B) ECMO in trauma

MVC victim survived after being submerged x 20 minutes – CPR (with LUCAS) and then managed further with ECMO.

Key to successful outcome will be EARLY recognition of cases that may benefit and early alert/consultation with CV surgery.

Best evidence for ECMO is for re-warming severe hypothermic patients.

 


 C) Significant MOI + spine pain = CT

Obtaining spine x-rays in cases with moderate probability of bony injury inevitably leads to another trip down the long hallway to visit our diagnostic imaging colleagues (and delay to definitive diagnosis).

If your patient needs a CT, order a CT.

See attached consensus guideline.


D) Pelvic binders are not used to ‘treat’ the pelvic fracture

They are used to treat any hemodynamic instability caused by the fracture. If a patient is stable or has a pelvic fracture that is not likely causing significant bleeding, the binder can likely be loosened or removed.

A pelvic binder can exacerbate some fractures, such as lateral compression fractures. Orthopedics should be assisting with this decision.

 


E) That intubated transfer patient just waved at me!

There is a reason trauma transfers should be assessed on arrival.

Consultants are expected to attend to these patients ASAP, but timely review by emergency MD is expected to assess/treat priorities (ventilatory status, analgesia need, sedation etc.)

 


F) The patient is on warfarin…how quaint!

Do you remember when anticoagulants could be reversed? In the event you do meet a trauma patient on warfarin, early correct dosing of vitamin K and PCC may be crucial.

Review of such charts in past 2 years has our dosing all over the map.

Easy dosing regime is:

 

Vitamin K – 10mg IV and PCC – 2000IU if INR unknown,

If INR known: PCC – 3000IU if INR > 5, PCC – 2000IU if INR 3-5, PCC – 1000 if INR < 3.

 


G) Trauma checklist:

“SJRH ED Trauma Process Checklist” is in trauma note package in room 19 and is a very useful prompt (see below).


H/ High MOI Knee injuries are at risk for deterioration in department

Vascular status may change, compartment syndrome may develop.

Consider repeating physical exams, early orthopedic consultation and low threshold for CT with vascular studies.

 


I/ Where is this guy bleeding?

Maybe he isn’t. Failure to respond to resuscitation suggests continued hemorrhage or non-hemorrhagic cause for shock. With neurogenic shock, loss of sympathetic tone may cause hypotension without tachycardia or vasoconstriction.

Consideration should be made to start vasopressors in patients with spinal cord injury with persistent hypotension after attempted resuscitation and no evidence of hemorrhagic shock. Aim for a SBP of 90-100. Avoid overzealous fluid administration.

 


J/ NB Trauma Traumatic Brain Injury Consensus statement – May 2020

See attached

Download (PDF, 1.32MB)

Continue Reading

EM Reflections – June 2020

Thanks to Dr Joanna Middleton for leading the discussions this month

Edited by Dr David Lewis 


Discussion Topics

  1. Antiviral Toxicity

    • Always adjust dosing in patients with renal impairment
  2. Necrotising Fasciitis

    • Difficult clinical diagnosis
    • Should be on the differential for all soft tissue infections
    • Delayed definitive care always results in poor outcomes
  3. Epidural Abscess

    • Thorough detailed neurological examination required
    • Isolated leg weakness is rare in Stroke
    • Progressive development of symproms and mixed UMN/LMN signs suggests spinal cord compression.

 


Antiviral Toxicity

Case

A 70yr old male presents with a typical zoster rash in the left L1 dermatome. He has a past medical history of chronic renal insufficiency. He is started on Valacyclovir 1000mg TID. He represents 3 days later with hallucinations including a feeling that he was occupying a dead body. What is the differential diagnosis?


 

Varicella Zoster Encephalitis vs Valacyclovir Toxicity

VZV and antiviral toxicity can present with similar symptoms

Two main risk factors increase the risk for VZV

  • age greater than 50 years old
  • immunocompromised due to reduced T cell-mediated immunity

The main risk factor for antiviral toxicity is renal insufficiency

Differentiation

  • Timing
    • Toxicity presents within 1-3 days of starting drug (vs 1-2 weeks)

 

  • Symptoms – both can present with confusion and altered LOC
    • Encephalitis – fever, HA, seizures, more likely with Trigeminal nerve (V1) or disseminated zoster
    • Toxicity – Visual hallucinations, dysphasia, tremor/myoclonus
    • Toxicity – Cotard’s syndrome…

Cotard’s Syndrome

“le délire des négations”

(delirium of negation)

https://en.wikipedia.org/wiki/Cotard_delusion

  • Described in 1880 by neurologist Jules Cotard
    • “patient usually denies their own existence, the existence of a certain body part, or the existence of a portion of their body”
  • Seen in schizophrenia, psychosis and…
  • ….acyclovir toxicity (felt to be due to metabolite CMMB (9-carboxymethoxymethylguanine) crossing BBB)

Further Reading

Varicella Zoster Encephalitis case report and outline

Valacyclovir Toxicity case report and outline

Cotard’s Syndrome

Drug Dosing in Chronic Kidney Disease

 

 

 


Necrotising Soft Tissue Infections (NSTI)

Case

A 28yr old female presents pain, redness and swelling over the right thigh. She has a past medical history of type 2 diabetes. She is managed as an outpatient with intravenous ceftriaxone q24hrs. Her symptoms failed to respond on follow up. What is the concern now? Are there any red flags? What condition needs to be considered in patients with soft tissue infections that fail to respond to antibiotics?


NSTI first described by Hippocrates 5th century BC

“[m]any were attacked by the erysipelas all over the body when the exciting cause was a trivial accident…flesh, sinews, and bones fell away in large quantities…there were many deaths.”

 

Necrotizing fasciitis is characterized by rapid destruction of tissue, systemic toxicity, and, if not treated aggressively, gross morbidity and mortality. Early diagnosis and aggressive surgical treatment reduces risk; however, it is often difficult to diagnose NF, and sometimes patients are treated for simple cellulitis until they rapidly deteriorate.

Infection typically spreads along the muscle fascia due to its relatively poor blood supply; muscle tissue is initially spared because of its generous blood supply.

Infection requires inoculation of the pathogen into the subcutaneous tissue or via hematogenous spread.

Classification

  • Type 1 – polymicrobial – older/diabetics/EtOH/IC/PVD
  • Type 2 – monomicrobial – usually group A beta-hemolytic strep (often hematogenous) – healthy people of all ages

Early signs and symptoms of NSTI are often identical to those seen with cellulitis or abscesses potentially making the correct diagnosis difficult

‘Classic’ Signs / Symptoms

(1) the presence of bullae
(2) skin ecchymosis that precedes skin necrosis
(3) crepitus
(4) cutaneous anesthesia
(5) pain out of proportion to examination
(6) edema that extends beyond the skin erythema
(7) systemic toxicity
(8) progression of infection despite antibiotic therapy or rapid progression

First 4 are “hard” signs

  • Erythema (without sharp margins; 72 percent)
  • Edema that extends beyond the visible erythema (75 percent)
  • Severe pain (out of proportion to exam findings in some cases; 72 percent)
  • Fever (60 percent)
  • Crepitus (50 percent)
  • Skin bullae, necrosis, or ecchymosis (38 percent)

Streaking lymphangitis favours the diagnosis of cellulitis over necrotizing fasciitis

Diagnosis

  • There is no set of clinical findings, lab test results and even imaging that can definitively rule out necrotizing fasciitis
    • “Surgical exploration is the only way to establish the diagnosis of necrotizing infection”.
    • “Surgical exploration should not be delayed when there is clinical suspicion for a necrotizing infection while awaiting results of radiographic imaging other diagnostic information”
  • But what if you really aren’t sure?  Or if you get pushback?
  • CT is probably the best test – esp Type 1 (gas forming)
    • Findings – gas, fluid collections, tissue enhancement, inflammatory fascial changes
  • Finger test…
    • “After local anesthesia, make a 2-3 cm incision in the skin large enough to insert your index finger down to the deep fascia. Lack of bleeding and/or “dishwater pus” in the wound are very suggestive of NSTI. Gently probe the tissues with your finger down to the deep fascia. If the deep tissues dissect easily with minimal resistance, the finger test is + and NSTI can be ruled in.”  (emergencymedicinecases.com)
  • But what about PoCUS????

PoCUS

Diagnosis of Necrotizing Faciitis with Bedside Ultrasound: the STAFF Exam

Findings – “STAFF”

ST – subcutaneous thickening
A – air
FF – fascial fluid

Ultrasound video demonstrating Subcutaneous Thickening, Air, and Fascial Fluid (STAFF).

 

Soft tissue ultrasound findings are significantly different when compared to normal soft tissue ultrasound

Bottom Line: Limited data, but basically PoCUS is not sufficient to rule-in or rule out, but might be helpful in raising suspicion level for necrotising fasciitis for physicians who routinely scan all soft tissue infections.

 

LRINF Score

The LRINEC (Laboratory Risk Indicator for Necrotizing Fasciitis) Score: A Tool for Distinguishing Necrotizing Fasciitis From Other Soft Tissue Infections

Laboratory Risk Indicator for Necrotizing Fasciitis (LRINEC) Score.  2004, retrospective – score >6 negative predictive value of 96.0% and a positive predictive value of 92%.

 

A validation study looking only at patients with pathology-confirmed necrotizing fasciitis showed that a LRINEC score cutoff of 6 points for necrotizing fasciitis only had a sensitivity of 59.2% and a specificity of 83.8%, yielding a PPV of 37.9% and NPV of 92.5%. However, the study did show that severe cellulitis had a LRINEC Sscore ≥ 6 points only 16.2% of the time.  Therefore, the available evidence suggests that the LRINEC score should not be used to rule-out NSTI.

Bottom Line: Doesn’t rule-out…… or rule-in

 

Suggested Algorithm – UpToDate

 

EM Cases Review

BCE 69 Necrotizing Fasciitis

 

Further Reading

Necrotizing fasciitis – Can Fam Physician. 2009 Oct; 55(10): 981–987.

 


Epidural Abscess

Case

A 40yr old female presents with left leg weakness. She has a complex recent past medical history including recently diagnosed pneumonia, previous renal colic and type 2 diabetes. Could this be a stroke? What are the other causes of leg weakness? How does the examination differentiate UMN from LMN lesions? When considering a diagnosis of epidural abscess what investigation is required? How soon should it be performed?


Only 4% of Strokes present with isolated or predominant leg weakness. (Brain. 1994 Apr;117 ( Pt 2):347-54.
doi: 10.1093/brain/117.2.347)

Common mechanisms of weakness:

  • Upper motor neuron lesions (Stroke, Tumour, Spinal Cord Compression, etc)
  • Lower motor neuron lesions ( Neuropathy, Disc Prolapse, Spinal Cord Compression, etc)
  • Neuromuscular junction lesions (Myasthenia, etc)
  • Neuropathies (Guillain-Barre, etc)
  • Muscle (Myopathies, etc)

Full review on Muscle Weakness from the Merck Manual here

Weakness that becomes severe within minutes or less is usually caused by severe trauma or stroke; in stroke, weakness is usually unilateral and can be mild or severe. Sudden weakness, numbness, and severe pain localized to a limb are more likely caused by local arterial occlusion and limb ischemia, which can be differentiated by vascular assessment (eg, pulse, color, temperature, capillary refill, differences in Doppler-measured limb BPs). Spinal cord compression can also cause paralysis that evolves over minutes (but usually over hours or days) and is readily distinguished by incontinence and clinical findings of a discrete cord sensory and motor level.

Unilateral upper motor neuron signs (spasticity, hyperreflexia, extensor plantar response) and weakness involving an arm and a leg on the same side of the body: A contralateral hemispheric lesion, most often a stroke

Upper or lower motor neuron signs (or both) plus loss of sensation below a segmental spinal cord level and loss of bowel or bladder control (or both): A spinal cord lesion

 

Epidural Abscess

Spinal epidural abscess (SEA) is a severe pyogenic infection of the epidural space that leads to devastating neurological deficits and may be fatal. SEA is usually located in the thoracic and lumbar parts of the vertebral column and injures the spine by direct compression or local ischemia. Spinal injury may be prevented if surgical and medical interventions are implemented early. The diagnosis is difficult, because clinical symptoms are not specific and can mimic many benign conditions. The classical triad of symptoms includes back pain, fever and neurological deterioration.

Spinal Epidural Abscess: Common Symptoms of an Emergency Condition – A Case Report

 

  • 75% are a delayed diagnosis
    • Usually hematogenous spread, usually S. aureus
  • Diagnosis
    • CRP has an sensitivity of 85%, specificity of 50%
    • MRI is gold standard
    • CT with contrast 2nd choice

 

Further Reading

Spinal epidural abscess

Episode 26: Low Back Pain Emergencies

 

 

Continue Reading

EM Reflections – May 2020

Thanks to Dr Paul Page for leading the discussions this month

Edited by Dr David Lewis 


Discussion Topics

  1. Seizure disorder and safe discharge 

    • Consider risk factors for adverse outcome of discharge for all patients with recurrent seizure disorder
    • Use a checklist
  2. Competency and Capacity

    • Multidisciplinary consultation is paramount in deciding capacity
    • Special circumstances include vulnerable adults and pregnancy
  3. Testicular Torsion

    • Time = Testicle viability
    • Do not delay definitive management

Seizure disorder and safe discharge 

Case

A patient presents with recurrent seizures. They have a past medical history of schizophrenia and mental health delay. Following appropriate ED management with complete resolution of seizures and full recovery of the patient – what is the recommended disposition?


Seizure disorder is a common presentation to the Emergency Department. This EM Cases post provides an excellent summary for the ED approach to resolved seizures:

Ep 132 Emergency Approach to Resolved Seizures

 

ED approach to resolved seizures – Summary pdf


In this study – Ethanol withdrawal or low antiepileptic drug levels were implicated as contributing factors in 177 (49%) of patients. New‐onset seizures were thought to be present in 94 (26%) patients. Status epilepticus occurred in only 21 (6%) patients.

73% of patients were discharged.

 

 

 


Disposition

Most authors recommend admission for patients presenting with FIRST Seizure Episode. Patients with a past medical history of recurrent seizure disorder are more likely to be discharged than admitted.

However – this EBMedicine article cites an incidence of 19% seizure recurrence rate within 24 hours of presentation, which decreased to 9% if patients with alcohol related events or focal lesions on CT were excluded. They suggest, that at present, there is insufficient evidence to guide the decision to admit. They recommend this decision be tailored to the patient, taking into consideration the patient’s access to follow-up care and social risk factors (eg, alcoholism or lack of health insurance). Patients with comorbidities, including age > 60 years, known cardiovascular disease, history of cancer, or history of immunocompromise, should be considered for admission to the hospital.

 

Considerations For Safety On Discharge

Patients and their families should be counseled and instructed on basic safety measures to prevent complications (such as trauma) during seizures. For example, patients should be advised to avoid swimming or cycling following a seizure, at least until they have been reassessed by their neurologist and their antiepileptic therapy optimized, if needed. A particularly important point for seizure patients is education against driving. Although evidence remains controversial on this issue, there is general agreement that uncontrolled epileptic patients who drive are at risk for a motor vehicle crash, with potential injury or death to themselves and others. For this reason, most states do not allow these patients to drive unless they have been seizure-free on medications for 1 year. According to population survey data, 0.01% to 0.1% of all motor vehicle crashes are attributable to seizures


Competency and Capacity

Case

A young female patient with a history of polysubstance drug abuse presents with a psychotic episode. She refuses treatment. What are the competency and capacity implications? She is also pregnant. Does this change the the competency and capacity implications?


This LitFL post provides and excellent outline for Competency and Capacity in the ED:

Capacity and Competence

This article published by the RCPSC provides a useful outline from a Canadian perspective – with the following objectives.

  1. To clarify the role of decisional capacity in informed consent
  2. To discuss problems associated with decisional capacity and addiction

RCPSC – Decisional Capacity

 


 



Capacity in Pregnancy

Recommendations from the American College of Obstetricians and Gynecologists

On the basis of the principles outlined in this Committee Opinion, the American College of Obstetricians and Gynecologists (the College) makes the following recommendations:

  • Pregnancy is not an exception to the principle that a decisionally capable patient has the right to refuse treatment, even treatment needed to maintain life. Therefore, a decisionally capable pregnant woman’s decision to refuse recommended medical or surgical interventions should be respected.
  • The use of coercion is not only ethically impermissible but also medically inadvisable because of the realities of prognostic uncertainty and the limitations of medical knowledge. As such, it is never acceptable for obstetrician–gynecologists to attempt to influence patients toward a clinical decision using coercion. Obstetrician–gynecologists are discouraged in the strongest possible terms from the use of duress, manipulation, coercion, physical force, or threats, including threats to involve the courts or child protective services, to motivate women toward a specific clinical decision.
  • Eliciting the patient’s reasoning, lived experience, and values is critically important when engaging with a pregnant woman who refuses an intervention that the obstetrician–gynecologist judges to be medically indicated for her well-being, her fetus’s well-being, or both. Medical expertise is best applied when the physician strives to understand the context within which the patient is making her decision.
  • When working to reach a resolution with a patient who has refused medically recommended treatment, consideration should be given to the following factors: the reliability and validity of the evidence base, the severity of the prospective outcome, the degree of burden or risk placed on the patient, the extent to which the pregnant woman understands the potential gravity of the situation or the risk involved, and the degree of urgency that the case presents. Ultimately, however, the patient should be reassured that her wishes will be respected when treatment recommendations are refused.
  • Obstetrician–gynecologists are encouraged to resolve differences by using a team approach that recognizes the patient in the context of her life and beliefs and to consider seeking advice from ethics consultants when the clinician or the patient feels that this would help in conflict resolution.
  • The College opposes the use of coerced medical interventions for pregnant women, including the use of the courts to mandate medical interventions for unwilling patients. Principles of medical ethics support obstetrician–gynecologists’ refusal to participate in court-ordered interventions that violate their professional norms or their consciences. However, obstetrician–gynecologists should consider the potential legal or employment-related consequences of their refusal. Although in most cases such court orders give legal permission for but do not require obstetrician–gynecologists’ participation in forced medical interventions, obstetrician–gynecologists who find themselves in this situation should familiarize themselves with the specific circumstances of the case.
  • It is not ethically defensible to evoke conscience as a justification to attempt to coerce a patient into accepting care that she does not desire.
  • The College strongly discourages medical institutions from pursuing court-ordered interventions or taking action against obstetrician–gynecologists who refuse to perform them.
  • Resources and counseling should be made available to patients who experience an adverse outcome after refusing recommended treatment. Resources also should be established to support debriefing and counseling for health care professionals when adverse outcomes occur after a pregnant patient’s refusal of treatment.

Further Reading:

Ethically Justified Clinically Comprehensive Guidelines for the Management of the Depressed Pregnant Patient

How Do I Determine if My Patient has Decision-Making Capacity?

 


Testicular Torsion

Case

A 12 year old boy presents with scrotal discomfort in the early hours of the morning. The department is very busy and the waiting time to be seen is 4 hours. What triage category is this presenting complaint? If a diagnosis of torsion is considered, how quickly should definitive management be initiated?


Ramachandra et al. demonstrated through multivariate analysis of the factors associated with testicular salvage, that duration of symptoms of less than 6 h was a significant predictor of testicular salvage. They found that the median duration of pain was significantly longer in patients who underwent orchiectomy versus orchidopexy. Similar findings were seen with respect to time to operating room from initial presentation. They concluded that time to presentation is in fact the most important factor in determining salvageability of the testicle in testicular torsion. If surgical exploration is delayed, testicular atrophy will occur by 6 to 8 h, with necrosis ensuing within 8 to 10 h of initial presentation. Salvage rates of over 90% are seen when surgical exploration is performed within 6 h of the onset of symptoms, decreasing to 50% when symptoms last beyond 12 h. The chance of testicular salvage is less than 10%, when symptoms have been present for over 24 h

Factors influencing rate of testicular salvage in acute testicular torsion at a tertiary pediatric center.

Ramachandra P, Palazzi KL, Holmes NM, Marietti S

West J Emerg Med. 2015 Jan; 16(1):190-4.

[PubMed]

 

 

This study (Howe et al). confirmed the relationship between duration of torsion and testicle viability and also found a relationship between the degree of torsion


 

 

AAFP Review of Testicular Torsion: Diagnosis, Evaluation, and Management

 

 

 

 

 

 

Continue Reading

Lung PoCUS – Podcast

Lung PoCUS in Pediatric Emergency Medicine – Podcast

PoCUS Fellowship Clinical Pearl (RCP) May 2020

Dr. Mandy Peach (Emergency Physician and Dalhousie PoCUS Fellow, Saint John, NB, Canada)

Reviewed by Dr. David Lewis

 


Extract:

“My name is Mandy Peach and I am Emergency Physician at the Saint John Regional Hospital in Saint John, New Brunswick. I’m currently completing a PoCUS Fellowship and a pediatric rotation through the IWK Emergency Department in Halifax…….

What is the evidence for the use of PoCUS and diagnosing pediatric pneumonia. Well trained PoCUS Physicians can identify pneumonia with a sensitivity of 89% and a specificity of 94%, compared community-acquired pneumonia chest x-ray has a sensitivity of 69% and a specificity of 100%, if you see it great…. but what about early bacterial pneumonia and this case PoCUS has the upper hand, and if you consider consolidations behind the heart that can be visualized on PoCUS and obscured on chest x-ray – PoCUS 2  chest x-ray zero. So clearly it’s a useful tool to have when trying to differentiate between bacterial pneumonia that requires treatment and viral causes that would indicate conservative management. So how do we actually ultrasound the lungs…..the first step is to make the kid comfortable scan them in a position of comfort for example and their parents arms what the patient touch the ultrasound gel or the probe so it’s less of a scary thing maybe play their favourite music or YouTube video on the background or give them their favourite or snack do you want to choose a high frequency linear probe and scanning the longitudinal plane ……….”

 

Listen to the Podcast for some useful tips on performing and interpreting lung ultrasound in the pediatric population.

Continue Reading

Ear Foreign Body Removal

Ear Foreign Body Removal

Resident Clinical Pearl (RCP) May 2020

Dr. Sultan Alrobaian (PEM Fellow and Dalhousie PoCUS Fellow, Saint John, NB, Canada)

Reviewed by Dr. David Lewis


Introduction

  • Most patients with ear Foreign Bodies (FB) are children, adults can also present with ear FB
  • The most common objects removed include beads, pebbles, tissue paper, small toys, popcorn kernels, and insects
  • Diagnosis is often delayed because the causative event is usually unobserved or the symptoms are nonspecific
  • Most of the patients with ear FBs were asymptomatic at presentation, other patients presented with otalgia, bleeding from the ear, otorrhea, tinnitus, hearing loss, a sense of ear fullness or symptoms of otitis media
  • Successful removal depends on several factors, including location of the foreign body, type of material and patient cooperation
  • Visualization of a foreign body on otoscopy confirms the diagnosis, the other ear and both nostrils should also be examined closely for additional foreign bodies.

Clinical Anatomy

© 2020 UpToDate, Inc. and/or its affiliates. All Rights Reserved.


Equipment

  • Multiple options exist for removal of external auditory canal foreign bodies
  • Which piece of equipment to use will be influenced by the type of FB, the shape of the FB, the location of the FB and the cooperativeness of the patient

Timing

  • The type of foreign body determines the timing for removal
  • Button batteries, live insects and penetrating foreign bodies warrant urgent removal

Indications for consultation or referral to a specialist

  • Button battery
  • Potentially penetrating foreign bodies
  • Foreign body with evidence of injury to the external ear canal (EAC), tympanic membrane, middle ear, vestibular symptoms or marked pain

Technique


1 – Irrigation

  • This technique is used for small inorganic objects or insects
  • Irrigation is often better tolerated than instrumentation and does not require direct visualization
  • Contraindicated in patients with tympanostomy tubes, perforated tympanic membranes or button battery because the potential for caustic injury.
  • An angiocatheter or section of tubing from a butterfly syringe
  • Using body temperature water, retract the pinna, and squirt water superiorly in the external auditory canal, behind the FB

© 2020 UpToDate, Inc. and/or its affiliates. All Rights Reserved.


2 – Instrumentation under direct visualization

  • Instrumentation can be painful and frequently warrants procedural sedation in young children or other uncooperative patients
  • General anesthesia may be required to ensure safe removal
  • Restrain if needed for safety

  • Commonly used pieces of equipment are curettes, alligator forceps, and plain forceps. Other equipment options include using a right angle hook, balloon catheter, such as a Fogarty catheter

  • Used in conjunction with the operating head of an otoscope
  • The pinna should be retracted, and the FB visualized
  • When using forceps, the FB can be grasped and removed

  • Both curettes and right angle hooks should be gently maneuvered behind the FB and rotated so the end is behind the FB, which can then be pulled out

© 2020 UpToDate, Inc. and/or its affiliates. All Rights Reserved.


3 – Suction

  • This should be performed with a soft suction tipped catheter that has a thumb controlled release valve
  • Insert the suction against the FB under direct visualization and then activate the suctions and remove the FB

© 2020 UpToDate, Inc. and/or its affiliates. All Rights Reserved.


4 – Cyanoacrylate

  • Apply a small amount of cyanoacrylate or skin glue to the blunt end of a cotton-tipped applicator
  • Insert it against the FB under direct visualization and hold in place until the glue dries
  • Slowly and carefully withdraw


5 – Insect removal

  • The first step is to kill the insect with mineral oil followed by lidocaine
  • Once the insect is neutralized, it can be removed by any of the above methods


SUMMARY

  • Foreign bodies of EAC frequently occur in children six years of age and younger
  • Patients with foreign bodies of the EAC are frequently asymptomatic
  • Button batteries , penetrating foreign bodies or injury to the EAC should undergo urgent removal by an otolaryngologist.
  • With adequate illumination, proper equipment, and sufficient personnel, many EAC foreign bodies can be removed

REFERENCES

1.Lotterman S, Sohal M. Ear Foreign Body Removal. [Updated 2019 Jun 5]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2020 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK459136/

2.https://www.uptodate.com

3.Heim S W, Maughan K L. Foreign bodies in the ear, nose, and throat. Am Fam Physician. 2007;76(08):1185–1189. [PubMed] [Google Scholar]

4.Awad AH, ElTaher M. ENT Foreign Bodies: An Experience. Int Arch Otorhinolaryngol. 2018;22(2):146–151. doi:10.1055/s-0037-1603922

Continue Reading

PoCUS in COVID

Point of Care Ultrasound (PoCUS) during the Covid-19 pandemic – Is this point of care tool more efficacious than standard imaging?

Resident Clinical Pearl (RCP) May 2020

Dr. Colin Rouse– (PGY-3  CCFP Emergency Medicine) | Dalhousie University

and Dr. Sultan Alrobaian (Dalhousie PoCUS Fellow, Saint John, NB, Canada)

Reviewed by Dr. David Lewis

 


Case

A 70 year of woman present to the ED with a history of fever, cough and dyspnoea. After a full clinical assessment (with appropriate PPE), Lung PoCUS is performed.


Introduction

The Covid-19 Pandemic has created the largest international public health crisis in decades. It has fundamentally changed both societal norms and health care delivery worldwide. Changes have been implemented into resuscitation protocols including ACLS to prioritise appropriate donning of personal protective equipment (PPE) and consideration of resuscitation appropriateness prior to patient contact.1 Equipment has been removed from rooms to limit cross-contamination between patients. In this Pearl we will explore why PoCUS should not be discarded as an unnecessary tool and should be strongly considered in the assessment of a potential Covid Patient.

Disclaimer: Given the novel nature of CoVid-19 there is a lack of RCT data to support the use of PoCUS. These recommendations are based solely on expert opinion and case reports until superior evidence becomes available.


Potential Benefits of PoCUS

  • Lung PoCUS has increased sensitivity compared to conventional lung X-ray for known lung pathologies such as CHF4 and Pneumonia5 with similar specificities. Given that Pneumonia is the most common complication of Covid-19 it may help diagnose this complication in patients who have a normal CXR.
  • PoCUS can be performed by the assessing physician limiting the unnecessary exposure to other health care providers such and Radiologic Technologists and other staff in the diagnostic imaging department.
  • Lung PoCUS is low cost, repeatable and available in rural settings
  • Once pneumonia is diagnosed other potential complications can be sought including VTE and cardiovascular complications.

The assessment of the potential Covid-19 patient.

First one must consider the potential risk for coronavirus transmission at each patient encounter and ensure proper PPE2 for both oneself and the PoCUS device3.


Lung Ultrasound in the potential Covid-19 Patient

Technique

  • Appropriate level PPE
  • A low-frequency (3–5 MHz) curvilinear transducer
  • Set Focus to Pleural Line and turn off machine filters (e.g THI) to maximize artifacts
  • Scanning should be completed in a 12-zone assessment6
    • 2 anterior windows
    • 2 lateral windows
    • 2 posterior windows

Findings7

Mild Disease

  • Focal Patchy B-lines in early disease/mild infection (May have normal CXR at this point)
  • Areas of normal lung

 

Moderate/Severe Disease – Findings of bilateral Pneumonitis

  • B-lines begin to coalesce (waterfall sign)
  • Thickened and irregular pleura
  • Subpleural Hypoechoic consolidation      +/- air bronchograms

 

Other Covid-19 Pearls

  • Large/Moderate Pleural Effusion rarely seen in Covid-19 (consider another diagnosis) – Small peripleural effusions are common in COVID
  • The virus has a propensity for the base of the posterior lung windows and it imperative to include these views in your assessment.


Example COVID PoCUS Videos8

Confluent B Lines and small sub pleural consolidation

 

Patchy B lines and Irregular pleura

 

Irregular pleura

 

Air Bronchogram


CT & ultrasonographic features of COVID-19 pneumonia9

It has been noted that lung abnormalities may develop before clinical manifestations and nucleic acid detection with some experts recommending early Chest CT for screening suspected patients.10 Obviously there are challenges with this recommendation mainly regarding feasibility and infection control. A group of researchers in China compared Ultrasound and CT findings in 20 patients with COVID-19. Their findings are summarized in the table below:

Their conclusion was that ultrasound has a major utility for management of COVID-19 due to its safety, repeatability, absence of radiation, low cost and point of care use. CT can be reserved for patients with a clinical question not answered by PoCUS. CT is required to assess for pneumonia that does not extend to the pleura. Scatter artifact from aerated lung obscures visualization of deep lung pathology with PoCUS. When PoCUS is sufficient it can be used to assess disease severity at presentation, track disease evolution, monitor lung recruitment maneuvers and prone positioning and guide decisions related to weaning of mechanical ventilation.


Learning Points

  • Lung PoCUS is helpful in the initial assessment of the suspected or known COVID19 Patient
  • Lung PoCUS may reveal pathology not visible on CXR
  • Lung PoCUS can provide insight into COVID19 disease severity
  • Lung PoCUS is a useful tool to track disease progression in COVID19

Lung PoCUS in COVID Deep Dive

Deep Dive Lung PoCUS – COVID 19 Pandemic

 

 


References

  1. Edelson, D. P., Sasson, C., Chan, P. S., Atkins, D. L., Aziz, K., Becker, L. B., … & Escobedo, M. (2020). Interim Guidance for Basic and Advanced Life Support in Adults, Children, and Neonates With Suspected or Confirmed COVID-19: From the Emergency Cardiovascular Care Committee and Get With the Guidelines®-Resuscitation Adult and Pediatric Task Forces of the American Heart Association in Collaboration with the American Academy of Pediatrics, American Association for Respiratory Care, American College of Emergency Physicians, The Society of Critical Care Anesthesiologists, and American Society of …. Circulation.
  2. COVID-19 – Infection Protection and Control. http://sjrhem.ca/covid-19-infection-protection-and-control/
  3. Johri, A. M., Galen, B., Kirkpatrick, J. N., Lanspa, M., Mulvagh, S., & Thamman, R. (2020). ASE Statement on Point-of-Care Ultrasound (POCUS) During the 2019 Novel Coronavirus Pandemic. Journal of the American Society of Echocardiography.
  4. Maw, A. M., Hassanin, A., Ho, P. M., McInnes, M., Moss, A., Juarez-Colunga, E., Soni, N. J., Miglioranza, M. H., Platz, E., DeSanto, K., Sertich, A. P., Salame, G., & Daugherty, S. L. (2019). Diagnostic Accuracy of Point-of-Care Lung Ultrasonography and Chest Radiography in Adults With Symptoms Suggestive of Acute Decompensated Heart Failure: A Systematic Review and Meta-analysis. JAMA network open, 2(3), e190703. https://doi.org/10.1001/jamanetworkopen.2019.0703
  5. Balk, D. S., Lee, C., Schafer, J., Welwarth, J., Hardin, J., Novack, V., … & Hoffmann, B. (2018). Lung ultrasound compared to chest X‐ray for diagnosis of pediatric pneumonia: A meta‐analysis. Pediatric pulmonology, 53(8), 1130-1139.
  6. Wurster, C., Turner, J., Kim, D., Woo, M., Robichaud, L. CAEP. COVID-19 Town Hall April 15: Hot Topics in POCUS and COVID-19. https://caep.ca/covid-19-town-hall-april-15-hot-topics-in-pocus-and-covid-19/
  7. Riscinti, M. Macias, M., Scheel, T., Khalil, P., Toney, A., Thiessen, M., Kendell, J. Denver Health Ultrasound Card. http://www.thepocusatlas.com/covid19
  8. Images obtained from. Ultrasound in COVID-19. The PoCUS Atlas. http://www.thepocusatlas.com/covid19
  9. Peng, Q., Wang, X. & Zhang, L. Findings of lung ultrasonography of novel corona virus pneumonia during the 2019–2020 epidemic. Intensive Care Med (2020). https://doi.org/10.1007/s00134-020-05996-6
  10. National Health Commission of the people’s Republic of China. Diagnosis and treatment of novel coronavirus pneumonia (trial, the fifth version)[EB/OL]. (2020-02-05)[2020-02-06]. http://www.nhc.gov.cn/yzygj/s7653p/202002/3b09b894ac9b4204a79db5b8912d4440.shtml
Continue Reading

Ten Best Practices for Improving Emergency Medicine Provider-Nurse Communication

 

On behalf of all our Emergency Physicians, we want to thank the most valuable asset we have….. our super-skilled, resourceful, caring ……. ER Nurses

 

How can we improve our communication?


 

Thanks to Dr. Mekwan for recommending this article

 

Communication between nurses and emergency medicine (EM) providers is critical to the safe and effective care of patients in the emergency department. Understanding interactions and information needs among clinical team members can not only aid in communication, but can also provide a framework for training and the design of workflow and health information technology systems.

 

Top Ten Best Practices for Improving Communication in the ED

 

  1. Communicate diagnostic assessment, plan of care and disposition plan to other team members as early as possible. Update the team of any changes to the plan.
  2. Communicate pending tasks in the patient’s care as well as information regarding changes or holdups to tasks or orders.
  3. Communicate details regarding proactive diagnostic testing and therapeutic interventions (e.g. placing IV and drawing bloodwork prior the physician evaluation in patients with abdominal pain, obtaining urine HCG in women of childbearing age).
  4. Don’t assume everyone has a shared understanding: recognize that you might have unique access to information and make sure that it is shared in a timely manner.
  5. Notify providers of any critical or unexpected changes in vital signs or patient status. Did the patient develop new tachycardia, fever, or hypotension? Is the patient more somnolent or getting more agitated?
  6. Do not assume electronic orders substitute for verbal communication.
  7. Use asynchronous communication for lower priority items to aid in prioritization (e.g. leaving a note for a physician requesting they sign-off on non-urgent orders).
  8. Adapt communication strategies based on team members’ experience level and existing relationships. For example, a new nurse may need extra time and guidance while orienting.
  9. Adapt communication strategies to the physical layout of the ED, especially in those facilities where nurses and physicians may have workstations out of sight from one another or where it is not obvious which staff members are on different care teams.
  10. Use strategies that exploit provider experience level regardless of role hierarchy. Perhaps we all remember being a fresh resident physician (finally a doctor!) and realizing that we knew very little compared to the seasoned charge nurse.

 


 

 

 

Continue Reading

Superficial can also be Deep – Superficial Thrombophlebitis

Superficial Thrombophlebitis – an approach to diagnosis and management

Resident Clinical Pearl (RCP) May 2020

Dr. Devon Webster – PGY2 FMEM Dalhousie University, Saint John NB

Reviewed by Dr. David Lewis

 


Case

Claude Virchow is a 59-year-old gentleman who presents to your emergency department complaining of pain to his medial right leg. 2 days ago, he bumped his knee and since then, has developed a hard, rope-like, tender swelling along the inside of his knee. On exam, you see the following image and he winces as you palpate along the indurated cord.

Figure 1 Source

In the next bed over, is a 39-year-old man presents with similar induration along his antecubital fossa bilaterally. He has a history of IVDU and was seen a week prior for the same problem. He is back as the indurated areas seem to be extending and his pain is worsening despite abstinence from injection and adherence to conservative measures. There are no signs of infection.

What are your recommendations?


 

What is superficial thrombophlebitis?

  • Thrombus formation in a superficial vein with associated inflammation of the vessel wall.
  • Typically involves the lower extremities with greater saphenous vein involvement in 60-80% of cases
  • Less commonly, affects the superficial veins of the upper extremities, neck (external jugular) or causes ‘Mondor’s syndrome,’ a superficial thrombophlebitis of the anterior chest wall.

 

Why does it matter?

  • In patients with superficial venous thrombosis (ST) >5cm in length, approximately 20% have a concomitant DVT and 4% have a PE
  • Some patients with ST may be candidates for anticoagulation

 

Anatomy review:

  • Lower extremity:
    • Superficial venous system: primarily comprised of the greater and lesser saphenous veins (aka long and short saphenous veins)
    • Deep venous system: anterior tibial, peroneal and femoral veins.
    • The saphenofemoral junction (SFJ) forms the connection between the deep and superficial systems.
  • Upper extremity:
    • Superficial: digital, metacarpal, cephalic, basilic and median veins
    • Deep: radial, ulnar, brachial, axillary, subclavian veins

Figure 2 Source


 

Figure 3 Source


 

Risk Factors:

  • The same as VTE! E.g. malignancy, trauma, hormone therapy, etc.
  • Varicose veins account for up to 90% of cases of lower limb ST and risk factors for varicose veins (e.g. lack of physical activity, venous stasis) increase the risk of ST.
  • Risk factors suggesting concomitant DVT when ST is also present: age >60, male sex, bilateral ST, presence of systemic infection, absence of varicose veins.
  • Mondor’s: often associated with breast reconstruction

 

History & Physical:

  • The patient may describe a painful, erythematous, swollen, hard vein that is tender to touch.
  • Inquire about symptoms and looks for signs suggestive of DVT, PE or secondary infection.
  • Low grade fever may be present in uncomplicated ST but higher fevers and erythema extending beyond the borders of the vein suggest suppurative ST.
  • Ask about risk factors as per VTE though may be idiopathic.
  • Note that a D-Dimer is not a helpful tool for distinguishing ST from DVT

 

Which patients with superficial thrombophlebitis require ultrasonography?  

  • Lower limb:
    • US recommended for MOST patients
    • If clinical picture is not obvious
    • If suspected concomitant DVT
    • ST is above the knee, especially if above mid-thigh
    • ST is in the upper calf near perforating veins in the popliteal fossa
  • Upper limbs:
    • Patients with ST of veins approaching the deep venous system (basilic, cephalic veins) that do not respond to conservative measures or have progression of their symptoms should undergo duplex US to evaluate for clot extension.
  • Mondor’s (anterior chest): US rarely required

 

Key points on ultrasound report:

  • For lower extremities, assess proximity to the saphenofemoral junction (SFJ) and the length of the ST. Specifically determine if ST is >5cm in length or if <3cm proximity to the SFJ.
  • Rule out DVT
  • Rule out other causes of pain (e.g. popliteal cyst, muscle mass)

 

Treatment:

  • General measures:
    • Non-pharmacologic
      • Elevate extremity
      • Apply continuous, moist heat x72 hrs
      • Remove any offending solution or catheter
      • Encourage early mobility
    • Pharmacologic
      • Tylenol, NSAIDs
      • Topical NSAIDs
      • Do not give antibiotics unless signs of infection.
  • Upper extremity ST
    • Anticoagulation?
      • Limited data to guide management!
      • Some experts would suggest consideration of anticoagulation for patients with ST that are at risk for DVT (e.g. ST in veins in close proximity to deep veins).
      • May consider anticoagulation for pts with persistent symptoms despite conservative mgmt. (e.g. ongoing excessive pain and swelling) as anticoagulation is effective in alleviating symptoms, especially if ST precipitated by malignancy.
      • However, when considering treatment, important to note that PE from upper extremity ST is rare!

 

  • Mondor’s (chest well) ST
    • Self-limited. Conservative management.

 

  • Lower limb ST (see algorithm below):
    • ST within 3 cm of saphenofemoral junction: therapeutic dose of anticoagulation for 3 months
      • g.: rivaroxaban 15mg PO BID x3 weeks, followed by 20 mg OD, warfarin, full dose LMWH
    • ST >/5cm in length but >3 cm from saphenofemoral junction: prophylactic doses of anticoagulation
      • g.: rivaroxaban 10mg PO OD, dalteparin 5,000U SC q24hrs
    • ST <5cm, >3 cm from saphenofemoral junction but with severe symptoms or risk factors for extension: prophylactic doses of anticoagulant for up to 45 days
    • ST <5cm, >3cm from saphenofemoral junction, no severe symptoms or risk factors: conservative treatment

Figure 4 Approach to lower limb superficial thrombophlebitis. Source: Thrombosis Canada

 


 

Disposition & Prognosis:

  • Patients with extensive or recurrent ST should be referred to a specialist
  • Isolated lower limb uncomplicated ST not affecting the great or small saphenous veins and no risk factors for DVT: organize repeat clinical examination in 7-10 days to assess for resolution or progression. If symptoms or exam worsens, order ultrasound.
  • Resolution of ST may take up to 2-6 weeks.

 

Bottom Lines:

  • Superficial thrombophlebitis may be associated with DVT in up to 20% of cases and PE in up to 4%.
  • Ultrasound should be organized for most patients with lower limb ST and for some patients with upper extremity ST (progressive symptoms and concern for extension to deep venous system)
  • Patients with lower limb ST within 3 cm of the saphenofemoral junction should be treated with full dose anticoagulants. Those with ST >5 cm in length but farther from the SFJ, with severe symptoms or at high risk for clot extension should be treated with lower doses of anticoagulant.
  • Consider anticoagulants for patients with upper extremity ST with severe persistent symptoms not responding to conservative measures to alleviate their discomfort.
  • Patients with uncomplicated lower limb ST should have follow up organized within 7-10 days.

 

References:

  1. Chopra, V. Uptodate. Catheter-related upper extremity venous thrombosis [internet]. 2019 Nov 14. Available from: https://www.uptodate.com/contents/catheter-related-upper-extremity-venous-thrombosis?search=Catheter%20related%20upper%20extremity%20venous%20thrombosis&source=search_result&selectedTitle=1~150&usage_type=default&display_rank=1
  2. Scovell, S. Uptodate. Phlebitis and thrombosis of the superficial lower extremity veins [internet]. 2019 Oct 3. Available from: https://www.uptodate.com/contents/phlebitis-and-thrombosis-of-the-superficial-lower-extremity-veins?search=Phlebitis%20and%20thrombosis%20of%20the%20superficial%20lower%20extremity%20veins&source=search_result&selectedTitle=1~150&usage_type=default&display_rank=1
  3. Thrombosis Canada. Superficial Thrombophlebitis, Superficial Vein Thrombosis [internet]. 2019 Mar 25. Available from: https://thrombosiscanada.ca/clinicalguides/?search=superficial%20thrombophlebitis#
  4. Thrombosis Canada. Deep Vein Thrombosis (DVT): Treatment [internet]. 2016 May 19. Available from: http://thrombosiscanada.ca/wp-content/uploads/2016/05/3_Deep-Vein-Thrombosis-Treatment-2016May19-FINAL.pdf
  5. Mustonen, P. EBM Guidelines. Superficial venous thrombophlebitis [internet]. 2020 Mar 16. Available from: https://www.ebm-guidelines.com/ebmg/ltk.free?p_artikkeli=ebm00920
  6. Venes, D. Taber’s Medical Dictionary. Phlebitis [Internet]. Available from: https://www.tabers.com/tabersonline/view/Tabers-Dictionary/749144/all/phlebitis.
Continue Reading

Deep Dive Lung PoCUS – COVID 19 Pandemic

SJRHEM Weekly COVID-19 Rounds – May 2020

Dr. David Lewis


 

 

Part One covers aspects of core and advanced aspects of lung ultrasound application including: Zones, Technique, and Artifacts

Part Two covers PoCUS in COVID, the recent research, PoCUS findings, Infection Protection and Control, Indications and Pathways.


Part 1

 


Part 2

 

Continue Reading

In case you missed it – Spring 2020

Some non-COVID emergency updates selected from UptoDate and local research

 

Paul Atkinson, May 2020

 

You can go low(er): MAP target for older adults with septic shock

Previous studies in older adults with septic shock suggest that a mean arterial pressure (MAP) lower than the traditional target of ≥65 mmHg may have a mortality benefit. In an unblinded, randomized trial of 2600 older patients with vasodilatory shock (septic shock in 80 percent), 90-day mortality was 41 percent for individuals who received vasopressors at a MAP target of 60 to 65 mmHg (“permissive hypotension,” mean achieved MAP 67 mmHg) compared with 44 percent for patients who received usual care (mean achieved MAP 73 mmHg), although this difference was not significant. Adjusted analysis suggested a significant mortality benefit for the lower MAP target. Adverse outcomes, including acute kidney injury and supraventricular arrhythmias, were similar in both groups. These findings support the safety of a lower MAP target in older patients with septic shock but are inconclusive regarding a mortality benefit. We continue to support a target MAP within a range of 60 to 70 mmHg that is individualized for such patients.

Lamontagne F, Richards-Belle A, Thomas K, et al. Effect of Reduced Exposure to Vasopressors on 90-Day Mortality in Older Critically Ill Patients With Vasodilatory Hypotension: A Randomized Clinical Trial. JAMA 2020.


 

Shock first – then epi: Updated guidelines for cardiopulmonary resuscitation

An update of the guidelines for cardiopulmonary resuscitation (CPR) recently published by the International Liaison Committee on Resuscitation and American Heart Association includes no major changes in treatment recommendations for adults . The committee writes that either bag mask ventilation or an advanced airway strategy may be used during CPR for adult cardiac arrest, but that a supraglottic airway is preferred in circumstances when clinicians choose an advanced strategy but successful tracheal intubation may be difficult. For nonshockable rhythms, the committee recommends that epinephrine be given as soon as feasible during CPR, while for shockable rhythms epinephrine is given after initial defibrillation attempts are found to be unsuccessful. Recommendations against the use of vasopressin remain in place

Soar J, Maconochie I, Wyckoff MH, et al. 2019 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations: Summary From the Basic Life Support; Advanced Life Support; Pediatric Life Support; Neonatal Life Support; Education, Implementation, and Teams; and First Aid Task Forces. Circulation 2019; 140:e826.


 

Take a hike: Exercise Prescription in the Emergency Department can Lead to Behavioral Change in Patients

 

The provision of exercise prescriptions to ED patients was shown to be feasible in a New Brunswick study. The reported improvement seen in patients receiving the intervention and the increase in reported exercise in both groups suggests that exercise prescription for ED patients may be beneficial.

 

Milne F, Leech-Porter K, Atkinson P, et al. (February 21, 2020) Combatting Sedentary Lifestyles: Can Exercise Prescription in the Emergency Department Lead to Behavioral Change in Patients? . Cureus 12(2): e7071. doi:10.7759/cureus.7071


 

Cooling is hot again? Temperature management following cardiac arrest from nonshockable rhythm

Targeted temperature management (TTM) has been found to improve outcomes following cardiac arrest, but few studies have examined its effectiveness in the subpopulation of patients with a nonshockable rhythm. In an international, multicenter, randomized trial of nearly 600 patients treated in an intensive care unit following resuscitation from cardiac arrest with nonshockable rhythm, those managed with therapeutic hypothermia (goal temperature 33°C) had a better neurologic outcome at 90 days compared with those managed with TTM (goal temperature 37°C) . There were no differences in mortality or adverse outcomes between groups. Temperature management is an important intervention for all adults recovering from cardiac arrest.

Lascarrou JB, Merdji H, Le Gouge A, et al. Targeted Temperature Management for Cardiac Arrest with Nonshockable Rhythm. N Engl J Med 2019; 381:2327.


 

Risky business: Adjusted D-dimer for patients at low risk for pulmonary embolism

In a prospective study of over 1300 patients with suspected pulmonary embolus (PE), no individuals developed symptomatic venous thromboembolism when a protocol that used D-dimer adjusted for clinical probability by Wells score was used (D-dimer <1000 ng/mL for low probability and <500 ng/mL for moderate probability) . The need for computed tomographic pulmonary angiographic imaging was reduced by an estimated 17 percent had the traditional D-dimer cut off of <500 ng/mL been used. Results from this study may not be generalizable to patients with moderate pretest probability, inpatients, or populations with low prevalence of PE. Although high-sensitivity D-dimer testing is preferred, protocols that use D-dimer levels adjusted for pretest probability may be an alternative to unadjusted D-dimer in patients with a low pretest probability for PE.

Kearon C, de Wit K, Parpia S, et al. Diagnosis of Pulmonary Embolism with d-Dimer Adjusted to Clinical Probability. N Engl J Med 2019; 381:2125.


 

Choice remains: Antiseizure drugs for convulsive status epilepticus

There have been few high-quality data to guide the choice among antiseizure drugs that can be given intravenously for the initial treatment of convulsive status epilepticus after administering a benzodiazepine. The randomized, blinded ESETT trial enrolled nearly 400 children and adults with convulsive status epilepticus refractory to benzodiazepine treatment and showed that fosphenytoin, valproate, and levetiracetam had similar efficacy. Each drug resulted in seizure cessation and an improved level of consciousness within 60 minutes in approximately 50 percent of patients. These findings support our recommendation to give a benzodiazepine as the first agent, followed by either fosphenytoin, valproate, or levetiracetam as the second agent, for the initial treatment of generalized convulsive status epilepticus.

Kapur J, Elm J, Chamberlain JM, et al. Randomized Trial of Three Anticonvulsant Medications for Status Epilepticus. N Engl J Med 2019; 381:2103.


 

Are they safe? Intimate Partner Violence Documentation and Awareness in an Urban Emergency Department

 

A New Brunswick study on intimate partner violence suggests that current intimate partner violence documentation tools are not being properly utilized. Low rates of intimate partner violence documentation in high-risk patients and a lack of education among the ED staff indicate that there is a need to improve current practices. In order to improve the identification of this important problem, appropriate training and education about intimate partner violence/domestic violence are required as this will definitely instill awareness among the ED staff about available community resources for victims.

 

Vonkeman J, Atkinson P, Fraser J, et al. (December 28, 2019) Intimate Partner Violence Documentation and Awareness in an Urban Emergency Department. Cureus 11(12): e6493. doi:10.7759/cureus.6493


 

Bigger is still badder: Surgery versus conservative treatment for cerebellar hemorrhage

Current guidelines recommend surgical evacuation for cerebellar hemorrhages >3 cm in diameter. Although there are no randomized trials to guide treatment, this practice is supported by a recent meta-analysis of individual patient data from four observational studies matching 152 patients who had surgical hematoma evacuation with 152 patients who had conservative treatment . In the adjusted analysis, surgical hematoma evacuation was associated with improved survival at three months (78 versus 61 percent) yet similar rates of a favorable functional outcome. However, in the subgroup with a hematoma volume ≥15 cm3 (a comparable size to >3 cm diameter), a favorable functional outcome was more likely with hematoma evacuation. Limitations of the study include retrospective design, lack of randomization, and small sample size for subgroup analyses.

Kuramatsu JB, Biffi A, Gerner ST, et al. Association of Surgical Hematoma Evacuation vs Conservative Treatment With Functional Outcome in Patients With Cerebellar Intracerebral Hemorrhage. JAMA 2019; 322:1392.


 

No kidding: CSF analysis in well-appearing young febrile infants with UTIs

The need to perform a lumbar puncture to obtain cerebrospinal fluid (CSF) for analysis in otherwise low-risk, well-appearing febrile infants with urinary tract infections (UTIs) has been questioned. In a systematic review and meta-analysis of nearly 3900 infants 29 to 90 days of age (20 observational studies), the pooled prevalence of bacterial meningitis in those infants with UTIs was 0.25 percent. Sterile CSF pleocytosis was variably reported (in up to 29 percent of patients with UTIs), leading to unnecessary additional antibiotic coverage for suspected meningitis pending culture results. These findings support avoiding lumbar puncture in otherwise low-risk, well-appearing febrile young infants 29 to 90 days of age with UTIs.

Nugent J, Childers M, Singh-Miller N, et al. Risk of Meningitis in Infants Aged 29 to 90 Days with Urinary Tract Infection: A Systematic Review and Meta-Analysis. J Pediatr 2019; 212:102.


 

Mini-ECMO: 2019 AHA update on pediatric advanced life support

The 2019 American Heart Association focused update on pediatric advanced life support provides evidence review and treatment recommendations for the use of extracorporeal membrane oxygenation (ECMO) with CPR (ECPR) and targeted temperature management after resuscitation. According to the update, use of ECPR in settings with existing ECMO protocols, expertise, and equipment may be beneficial for selected patients for whom conventional CPR is ineffective after in-hospital cardiac arrest. In addition, for infants and children who remain comatose after resuscitation from in- or out-of-hospital cardiac arrest, it is reasonable to provide five days of normothermia (temperature 36 to 37.5°C), or to provide two days of therapeutic hypothermia (targeted temperature range 32 to 34°C) followed by three days of continuous normothermia.

Duff JP, Topjian AA, Berg MD, et al. 2019 American Heart Association Focused Update on Pediatric Advanced Life Support: An Update to the American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Pediatrics 2020; 145.


 

Wait a minute (or 10): Opioid analgesia and adverse events during procedural sedation in children

In children undergoing moderate to severely painful procedures, intravenous opioids (eg, fentanyl or morphine) are frequently used for pain control prior to sedation. In a prospective, multicenter observational study of almost 6,300 children undergoing sedation for painful procedures (primarily fracture reductions) in the emergency department, opioid administration prior to the procedure versus no opioid analgesia was associated with an increased risk of oxygen desaturation (9 versus 4 percent), vomiting (7 versus 5 percent), and need for positive pressure ventilation (1.5 versus 0.9 percent). These risks were greatest when opioid analgesia was administered closer to the time of sedation. These findings confirm the increased risk for adverse events during procedural sedation for children who also receive intravenous opioids for pain control; clinicians should anticipate and be prepared to handle these adverse events and, when possible, avoid opioid administration just prior to sedation.

Bhatt M, Cheng W, Roback MG, et al. Impact of Timing of Preprocedural Opioids on Adverse Events in Procedural Sedation. Acad Emerg Med 2020; 27:217.

 


Download pdf here

Continue Reading

Whose Line is it Anyway? – PoCUS in a Patient with Dyspnea

Medical Student Clinical Pearl – March 2020

Nguyet (Na) Nguyen

MD Class of 2021
Memorial University of Newfoundland

Reviewed and Edited by Dr. David Lewis

All case histories are illustrative and not based on any individual


 

Case Report

ID: 60 y/o M with dyspnea presenting to the ED late evening

HPI: Patient complained of increasing SOB starting the morning on day of presentation, with a worsening 3 days of non-productive cough. No chest pain or other cardiac features. No complaint suggestive of URTI or GI illness. Patient was given Atrovent and Ventolin en route by EMS, and was allegedly moving more air into his lungs after this intervention. Patient reports no ankle swelling, paroxysmal nocturnal dyspnea, but reports using 2 pillows to elevate himself when sleeping. Patient reports no fever, unexplained weight loss or fatigue.

Past medical history includes chronic back pain, DM, atrial fibrillation, peripheral DM-related ulcers, chronic kidney disease, BPH, colon cancer with hepatic metastases. Past surgical history significant for 5x CABG, liver and colon resection.

His medications are amitriptyline 10mg PO qhs, acetaminophen 650mg PO BID, dutasteride 0.5mg PO daily, ferrous sulfate 300mg PO daily, furosemide 40mg PO BID, metformin 500mg BID, pantoprazole 40mg PO BID, pregabalin 150mg PO BID, primidone 125mg PO daily, rosuvastatin 40mg PO qhs, rivaroxaban 15mg PO daily.

He has a distant 10 pack-years smoking history, drinks alcohol occasionally, and does not use recreational drugs. The patient lives with his wife in their own home.

Physical exam: Patient was markedly pale, non-diaphoretic, in tripod position with increased work of breathing. His temperature was 36.9, regular pulse rate at 105, respiratory rate 22, oxygen saturation 90% on room air and a nebulizer mask through which he was receiving aerosolized Atrovent and Ventolin. His BP was 125/78mmHg.

Cardiovascular exam revealed distant S1S2 in a chest with no visible deformity. His JVD was at the level of the sternal angle, there was no pedal edema bilateral. Capillary refill was 3 seconds bilateral at the thumbs. Percussion revealed no focal dullness, however on auscultation, basal crackles were heard more prominently in the right lung base, though also present on the left. There were also wheezes noted in the upper lobes heard in the anterior chest. Abdomen was soft, non-distended, non-tender. Neurological exam unremarkable.

Investigations: ECG showed sinus tachycardia with a LBBB, bloods drawn for routine labs, VBG, lactate, CXR ordered.

Differential diagnosis: AECOPD vs congestive heart failure.

PoCUS (Arrival Time + 10 mins): B-lines were observed in both lungs when a curvilinear probe was placed over different areas of the anterior chest. A small pleural effusion was also noted at the bottom of the right lung. B-lines represent increased fluid in an area of the lung, and given different clinical contexts maye represent pulmonary edema, pneumonia, or pulmonary contusion. In this case the most likely explanation for bilateral diffuse B-Lines is CHF and Pulmonary Edema. 

Working Diagnosis (Arrival Time + 10 mins): CHF and Pulmonary Edema

Management (Arrival Time + 15 mins): Pending transfer fo CXR and results of investigations the patient was treated with intravenous diuretics. He passed 500mls of urine and his symptoms improved considerably.

 

Investigations Results (Arrival Time + 45 mins): leukocytes 6.4, hemoglobin 83, platelet 165, sodium 140, potassium 5/0, chloride 101, creatinine 120, urea 11.7, glucose 17.0. Venous blood gas showed pH 7.31, pCO2 555, HCO3- 28 and lactate 2.7.

CXR (Arrival Time + 45 mins):

CXR was similar to above, this image is from: https://radiopaedia.org/cases/acute-pulmonary-oedema-6

 

Final impression: Congestive heart failure


What are B Lines?

These are the ultrasound equivalent of Kerley-B lines often reported on chest X-ray, which indicate edema in the lungs. For an exam to be positive (i.e indicative of pathology), one needs to see a minimum of 3 B-lines per view. B-lines look like flashlight beams traveling undisrupted down the entire ultrasound screen, as seen in the images above obtained during the exam.

These need to be distinguished from other artifacts such as ‘A-lines’ and ‘comet tails’. A-lines are seen in normal lungs. These are ‘repetitive reverberation’ artifacts of the normal pleura in motion. (Figure 1)(1)

‘Comet tails’- reported first by Lichenstein et al. in 1998 (although he was describing B-Lines in this paper) (Figure 2) (1), are ‘short, hypoechoic artifacts’ that only descend vertically partially down the screen. These are normal lung artifacts. This paper explains “a common misunderstanding in lung ultrasound” nomenclature that stems from Lichtenstein’s original paper.

Download pdf

 

From: https://www.mdedge.com/emergencymedicine/article/96697/imaging/emergency- ultrasound-lung-assessment

 


More on Comet Tails Artifact in this post from LitFL:

Comet tail artefact

 


 

Protocols

There are multiple protocols that guide the ultrasound technique (4) , some of which are:

  • Lichenstein et al (1998): longitudinal scans of anterior and lateral chest walls of patients in semi- recumbent position. Positive test defined as bilateral multiple B-lines diffuse anterolateral or lateral. The protocol had reported sensitivity (true positive) of 100%, and specificity (true negative) 92% for cardiogenic pulmonary edema. Blue Protocol (2015)
  • Liteplo et al (2008): anterior and lateral chest walls with patient supine: each chest divided into 4 zones (anterior, lateral, upper and lower). Positive test: pathologic pattern found in >1 zone on each side, with both sides involved.
  • Volpicelli et al. (2008): longitudinal scans of supine patients with chest divided into 11 areas (3 anterior R, 3 lateral R, 2 anterior L, 3 lateral L) to obtain score 0-11. Scores strongly correlated with radiologic and BNP (lab marker of CHF) at presentation.

 

 


 

What is the Evidence?

Al Deeb et al. conducted a systematic review and analysis of prospective cohort and prospective case-control studies in the ED, IDU, inpatient wards and prehospital settings (n = 1075). This was published in Acad Emerg Med (2014), which reported a sensitivity of 94.1% for using B-lines to diagnosis acute cardiogenic pulmonary edema (ACPE), and a specificity of 92.4% for patients with a moderate- high pretest probability for ACPE.

The SIMEU Multicenter study reported in 2015 reported a significantly higher accuracy (97% sensitivity and 97.4% specificity) with an approach incorporating lung ultrasound (LUS) in differentiating acute decompensated heart failure (ADHF) and non-cardiac causes of acute dyspnea, compared to approaches using the initial clinical workup (past medical history, history of presenting illness, physical examination, ECG, ABG), chest X-ray alone and natriuretic peptides.

Martindale et al. reported in 2016 (Academic Emergency Medicine) high positive likelihood ratio of pulmonary edema observed on lung ultrasound and low negative likelihood ratio of B-line pattern on lung US in affirming the presence of acute heart failure, after a systematic review and analysis of 57 prospective and cross-sectional studies (n = 1,918).

A useful Systematic Review “Emergency department ultrasound for the detection of B-lines in the early diagnosis of acute decompensated heart failure: a systematic review and meta-analysis ” from McGivery et al from SJRHEM (7), was published in 2018.


 

Learning Point

For a patient presenting to the ER with dyspnea, using PoCUS to observe 3 or more B-lines in two bilateral lung zones +/- pleural effusion can rapidly guide an accurate diagnosis of acute congestive heart failure.


 

References

  1. Taylor, T., Meer, J., Beck, S. Emerg Med. (2015) https://www.mdedge.com/emergencymedicine/article/96697/imaging/emergency- ultrasound-lung-assessment Last accessed Feb 29, 2020
  2. Lee, FCY, Jenssen, C., Dietrich, CF Med Ultrason (2018); 20(3): 379-384
  3. Ang SH. & Andrus P Curr Cardiol Rev. 2012 May; 8(2): 123-136https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3406272/
  4. Al. Deeb M., Barbic S., Featherstone R., Dankoff J., Barbic D. Acad Emerg Med 2014 Aug; 21(8): 843-52 https://www.ncbi.nlm.nih.gov/pubmed/25176151
  5. Pivetta E et al. Chest. 2015 Jul; 148(1): 202-210 https://www.ncbi.nlm.nih.gov/m/pubmed/25654562/
  6. Martindale JL, Wakai A, Collins SP, Levy PD, Diercks D, Hiestand BC, Fermann GJ, deSouza I, Sinert R, Acad Emerg Med. 2016 Mar; 23(3): 223-242 https://www.ncbi.nlm.nih.gov/pubmed/26910112
  7. McGivery K, Atkinson P, Lewis D, et al. Emergency department ultrasound for the detection of B-lines in the early diagnosis of acute decompensated heart failure: a systematic review and meta-analysis. CJEM. 2018;20(3):343‐352. doi:10.1017/cem.2018.27

 

Continue Reading