Rib Fractures and Serratus Anterior Plane Block

Continue Reading

Scaphoid Fracture – Can PoCUS disrupt the traditional ‘splint and wait’ pathway?

 

PoCUS Fellow Pearl

Dr. Melanie Leclerc, CCFP-EM

MSK PoCUS Fellow

Dalhousie University Department of Emergency Medicine

 

Reviewed & Edited by Dr David Lewis (@e_med_doc)

All case histories are illustrative and not based on any individual


 

Case:

A 37 year old, right hand dominant, carpenter presents to your local ED with a complaint of right wrist pain. He was on a step-stool and lost his balance earlier today. He fell landing on his outstretched arm and had an acute-onset of radial-sided wrist pain. He denies any other injury. There are no neurologic complaints.

On exam, there is no visible deformity. The skin is closed and there is some swelling noted. The patient is tender over the anatomic snuff box as well as volarly over the scaphoid. There is pain noted with axial loading of the thumb. There is no other tenderness. ROM is within normal limits. The limb is distally neurovascularly intact.


X-rays are normal.

An occult scaphoid fracture is suspected. At this institution, patients with suspected occult scaphoid fracture are placed in a thumb spica splint and referred to the local hand surgeon to be seen in ~10-14 days for repeat assessment and X-ray.

Can Point of Care Ultrasound change this traditional “splint and wait” patient pathway?


 

Background:

Scaphoid fracture is a common presentation to the Emergency Department accounting for approximately 15% of all wrist injuries and 70% of carpal fractures. Up to 30% of the time, radiographs at initial presentation appear normal making fracture a commonly missed injury for Emergency physicians. A failure to recognize this injury can lead to chronic pain and functional impairment for patients. Particularly, fractures of the proximal pole (most distant to the blood supply) can lead to avascular necrosis (AVN) at high rates. Non-union can lead to scaphoid non-union advanced collapse (SNAC wrist) which can perpetuate further degenerative changes throughout the carpus. This can cause a significant impact on quality of life and occupation. Early detection of fracture could expedite fixation and possibly results in better outcomes. Further study in this area is needed.


 

Anatomy:

The scaphoid bone lies in the radial aspect of the proximal carpal row. It’s unique shape (“twisted peanut”), lends to easy recognition. It articulates proximally with the distal radius, distally with the trapezium, and on its’ ulnar aspect with the lunate to form the scapho-lunate interval. The blood supply to the scaphoid is unique in that the majority of it is retrograde. The dorsal carpal branch of the radial artery supplies the bone from distal to proximal. A small proportion of the blood supply originates at the proximal end. The boundary between the two supplies creates a “watershed” area prone to non-union and AVN.


 

Classification of Fractures:

Scaphoid fractures are classified by location. These regions are the proximal, middle and distal thirds which account for 20%, 75%, and 5% of the fractures respectively. The stability of fractures is determined by the displacement (>1mm) and angulation (scapholunate angle >60 and radiolunate angle >15). The Hebert Classification as endorsed by Traumapedia can be found below.


 

Traditional Imaging:

Imaging of these suspected injuries varies. Traditionally serial X-rays were used, but have been found to be poorly sensitive even several weeks after injury. Bone scan has also been used as an alternative due to it’s high sensitivity, but has poor specificity and provides no further information regarding the nature of the fracture. CT is relatively sensitive and specific and provides information for pre-operative planning. MRI is considered the gold standard, but is difficult to obtain in a timely manner in Canada.

Bäcker HC, Wu CH, Strauch RJ. Systematic Review of Diagnosis of Clinically Suspected Scaphoid Fractures. J Wrist Surg. 2020 Feb;9(1):81-89. doi: 10.1055/s-0039-1693147. Epub 2019 Jul 21. PMID: 32025360; PMCID: PMC7000269.


 

PoCUS Technique:

  • Linear probe

  • Consider waterbath, gel standoff pad, or bag of IV fluid

  • Scan with the wrist ulnarly deviated

  • Scan in the longitudinal and transverse orientations of volar, lateral and dorsal aspects

  • Place the probe in longitudinal orientation dorsally over lister’s tubercle of the radius and scan distally until the scaphoid is visualized in the snuff box. Scan radial to ulnar.

  • Rotate to the transverse orientation and scan through proximal to distal

  • Volarly, in the transverse plane, identify the tendon of the flexor carpi radialis (this lies radial to the easily identifiable palmaris longus tendon on exam). The scaphoid is found deep to this. Scan proximal to distal.

  • Rotate to the longitudinal orientation and scan radial to ulnar

 


 

Video Demonstration:

 


 

Findings:

  • Cortical disruption

  • Periosteal elevation

  • Hematoma


 

The Evidence:

  • Early advanced imaging (CT or MRI) compared to initial 2 week immobilisation proved more cost effective and had better patient oriented outcomes (ie. missed work).(7)
  • A systematic review and meta analysis of moderate to high quality studies published in 2018 found that ultrasound had a mean sensitivity of ~89% and specificity of ~90% for detection of occult scaphoid fractures.(1)
  • Similar results were also reported by another systematic review in 2018.(8)
  • Pocus was shown to have a comparable sensitivity to CT for occult scaphoid in a systematic review published in 2020.(2)

 

Limitations:

  • Only useful if positive
  • Operator experience dependent
  • US probe and frequency dependant
  • Potential for false positives due to injury of nearby structure causing hematoma
  • Potential for false positives in context of arthritis or remote trauma

 

Bottom line:

  • Useful if positive
  • Still need definitive test to further delineate fracture (ie: for operative planning)
  • Could expedite CT
  • Could expedite specialist follow-up
  • May improve ER physician diagnostic certainty
  • May improve patient trust and compliance with splinting
  • Further study is needed

 

Case Conclusion:

Scaphoid cortical disruption was visualized using PoCUS. After discussion with the hand surgeon, a CT Scan of the wrist was performed which confirmed a minimally displaced waste fracture of the scaphoid. The patient was splinted and seen the next day in clinic for discussion regarding operative management.


 

Further Review:

 

 


 

References

  1. Ali M, Ali M, Mohamed A, Mannan S, Fallahi F. The role of ultrasonography in the diagnosis of occult scaphoid fractures J Ultrason 2018; 18: 325–331.
  2. Bäcker HC, Wu CH, Strauch RJ. Systematic Review of Diagnosis of Clinically Suspected Scaphoid Fractures. J Wrist Surg. 2020 Feb;9(1):81-89.
  3. Bakur A. Jamjoom, Tim R.C. Davis. Why scaphoid fractures are missed. A review of 52 medical negligence cases, Injury, Volume 50, Issue 7, 2019, Pages 1306-1308.
  4. Carpenter CR et al. Adult Scaphoid Fracture. Acad Emerg Med 2014; 21(2): 101-121.
  5. Gibney B, Smith B, Moughty A, Kavanagh EC, Hynes D and MacMahon PJ American Journal of Roentgenology 2019 213:5, 1117-1123
  1. Jenkins PJ, Slade K, Huntley JS, Robinson CM. A comparative analysis of the accuracy, diagnostic uncertainty and cost of imaging modalities in suspected scaphoid fractures. Injury. 2008;39:768–774.
  2. Karl, John W. MD, MPH1; Swart, Eric MD1; Strauch, Robert J. MD1 Diagnosis of Occult Scaphoid Fractures, The Journal of Bone and Joint Surgery: November 18, 2015 – Volume 97 – Issue 22 – p 1860-1868.
  3. Kwee, R.M., Kwee, T.C. Ultrasound for diagnosing radiographically occult scaphoid fracture. Skeletal Radiol 47, 1205–1212 (2018).
  4. Malahias MA, Nikolaou VS, Chytas D, Kaseta MK, Babis GC. Accuracy and Interobserver and Intraobserver Reliability of Ultrasound in the Early Diagnosis of Occult Scaphoid Fractures: Diagnostic Criteria and a Way of Interpretation. Journal of Surgical Orthopaedic Advances. 2019 ;28(1):1-9.
  5. Mallee WH, Wang J, Poolman RW, Kloen P, Maas M, de Vet HCW, Doornberg JN. Computed tomography versus magnetic resonance imaging versus bone scintigraphy for clinically suspected scaphoid fractures in patients with negative plain radiographs. Cochrane Database of Systematic Reviews 2015, Issue 6.
  6. Mallee, W.H., Mellema, J.J., Guitton, T.G. et al. 6-week radiographs unsuitable for diagnosis of suspected scaphoid fractures. Arch Orthop Trauma Surg 136, 771–778 (2016).
  7. Melville, D., Jacobson, J.A., Haase, S. et al. Ultrasound of displaced ulnar collateral ligament tears of the thumb: the Stener lesion revisited. Skeletal Radiol 42, 667–673 (2013).
  8. Meyer, P., Lintingre, P.-F., Pesquer, L., Poussange, N., Silvestre, A., & Dallaudiere, B. (2018). Imaging of Wrist Injuries: A Standardized US Examination in Daily Practice. Journal of the Belgian Society of Radiology, 102(1), 9.
  9. Mohomad et al. 2019. Accuracy of the common practice of doing X-rays after two weeks in detecting scaphoid fractures. A retrospective cohort study. Hong Kong Journal of Orthopaedic Research 2019; 2(1): 01-06.
  10. Neubauer J, Benndorf M, Ehritt-Braun C, et al. Comparison of the diagnostic accuracy of cone beam computed tomography and radiography for scaphoid fractures. Sci Rep 2018; 8:3906.
  11. Ravikant Jain, Nikhil Jain, Tanveer Sheikh, Charanjeet Yadav. 2018. Early scaphoid fractures are better diagnosed with ultrasonography than X-rays: A prospective study over 114 patients, Chinese Journal of Traumatology, Volume 21, Issue 4, Pages 206-210.
  12. Senall, JA, Failla, JM, Bouffard, JL. 2004. Ultrasound for the early diagnosis of clinically suspected scaphoid fracture. J Hand Surg Am, 29:400-405.
  13. https://essr.org/content-essr/uploads/2016/10/wrist.pdf
  14. http://www.bonetalks.com/scaphoid
  15. https://radiopaedia.org/articles/scaphoid-fracture
  16. https://sketchymedicine.com/2014/07/scaphoid-bone-anatomy-and-fractures/
  17. https://radiopaedia.org/cases/scaphoid-fracture-11?lang=gb
  18. https://www.orthobullets.com/hand/6034/scaphoid-fracture
  19. https://meeting.handsurgery.org/abstracts/2018/EP15.cgi
  20. https://www.researchgate.net/figure/Bone-scintigraphy-patient-C-of-the-hands-the-patient-with-a-scaphoid-fracture-on-the_fig4_50399987
  21. https://www.youtube.com/watch?v=7pCXiRQMRKo&t=5s&ab_channel=UltrasoundPod
  22. https://litfl.com/terry-thomas-sign
Continue Reading

PoCUS for Diverticulitis

Dal PoCUS Fellowship – Journal Club – Feb 2021

Dr. Mandy Peach  CCFP-EM

PoCUS Fellow

Dalhousie University Department of Emergency Medicine

 

A Prospective Evaluation of Point-of-Care Ultrasonographic Diagnosis of Diverticulitis in the Emergency Department Allison Cohen, MD*; Timmy Li, PhD; Brendon Stankard, RPA-C; Mathew Nelson

 

Continue Reading

Tube Thoracostomy

Saint John EM Rounds – February 2021

Dr Crispin Russell

Thoracic Surgeon, Dalhousie University, Saint John

 

 


 

Trauma Rounds Summary:  January 19 2021 “Chest Tube Management in Trauma – Insights from a Thoracic Surgeon”

Summary – Dr. Andrew Lohoar

Major take home points:

 

  • Most common complication with insertion is advancing tube too far.

  • Consider placing tube if pneumothorax is > 10%, lower threshold if transporting patient from peripheral hospital.

  • Use 28 French tube for most cases

  • Direction you puncture chest wall is generally direction chest tube will follow

  • Bigger skin incision may make procedure easier

  • “Corkscrewing” or twisting chest tube while placing it, helps ‘feel’ where it is in the chest cavity (avoids advancing too far)

  • Post-chest tube insertion CXR is critical to identify placement issues

  • Use large volume of local anesthetic (20+ cc) – try to infiltrate parietal pleura

  • Consider infiltrating prior to setting up your tray, allowing more time for anesthesia

  • Consider holding Kelly clamp with one hand when puncturing pleural, to protect from pushing tip to far into chest. Spread clamp parallel to ribs

  • 0 Silk is still preferred for securing chest tube

  • Consider tying an ‘air knot’ 1 cm above skin when securing tube, allows easier adjustment later

  • Secure chest tube connections with longitudinal taping – stronger and can see joint

  • U/S can be used to assist with placement

  • Always assess for chest tube functioning post-procedure

Continue Reading

Clinical Pearls

Original, peer reviewed, clinical articles authored by our medical students, residents, fellows and faculty.


Medical Student Pearls

Short form case-based articles from our clerks and elective students.

Carbon Monoxide Poisoning

Carbon Monoxide Poisoning – A Medical Student Clinical Pearl Mitchell McDonough DMNB, Class of 2022 Reviewed by Dr. Rachel Goss […]
Read More
1 2 3 4 5 7 8 9 10

Resident Clinical Pearls

Case-based articles, innovations and practical tips from our iFMEM, FM and rotating residents.

“The Mother’s Kiss”

A Tool in Nasal Foreign Body Removal in Pediatric Patients Melanie Johnston, PGY2 iFMEM Dalhousie University Saint John Reviewed by […]
Read More
1 2 3 4 5 7 8 9 10

PoCUS Pearls

Point of Care Ultrasound pearls from our learners and faculty.

PoCUS & COVID Severity

Dal PoCUS Fellowship Journal Club March 2021 Dr. Mandy Peach PoCUS Fellow Dalhousie University Department of Emergency Medicine Zieleskiewicz L, […]
Read More

PoCUS for Pulled Elbow

Dal PoCUS Fellowship – Journal Club March 2021 Dr. Melanie LeClerc PoCUS Fellow Dalhousie University Department of Emergency Medicine Two- […]
Read More
1 2 3 4 5 6
Continue Reading
Posted in CPD

Lisfranc Injury – We have PoCUS but do we still need the cavalry?

 

 

PoCUS Fellow Pearl

Dr. Melanie Leclerc, CCFP-EM

MSK PoCUS Fellow

Dalhousie University Department of Emergency Medicine

 

Reviewed & Edited by Dr David Lewis (@e_med_doc)

All case histories are illustrative and not based on any individual


 

Case Report

A 32 year old male presents to a rural Emergency Department with a complaint of traumatic left foot pain. He was playing recreational football this evening. While crouching, the patient was tackled by another player who landed on his hyper-plantar flexed left foot from behind. The patient had immediate onset of pain in the middle of his foot and was unable to weight-bear. 

On physical examination, you notice significant bruising and swelling of the mid-foot. There is tenderness to the medial mid-foot specifically at the 1st-2nd tarsal-metatarsal articulations. X-rays of the foot appear normal. You are concerned about the possibility of a ligamentous Lisfranc injury.

https://www.footandanklesurgery.com.au/lisfranc-injuries

 


 

Lisfranc injuries

Lisfranc injuries are those that involve the tarsal-metatarsal joints. A spectrum of injury exists from ligamentous to fracture-dislocation. Up to 20% – 40% of injuries to the Lisfranc complex are missed in the Emergency Department. Unrecognized and untreated injuries can lead to long-term instability through the midfoot. As this region of the foot is responsible for a significant load during weight bearing, instability can accelerate degenerative changes in the foot resulting in chronic pain and disability

The injury is named after Jacques Lisfranc de St. Martin, a French surgeon and gynecologist performed forefoot amputations at the tarsometatarsal joint on cavalrymen, during the 1815 Napoleonic wars. Although he didn’t specifically describe the injury, it has since been recognised in equestrians and occurring as a result of a trapped plantar flexed foot in the stirrup during a fall.

 

Other mechanisms have been described including high velocity injuries (sports injuries, foot on brake pedal MVA) and low velocity injuries (Stepping off a curb awkwardly). Low velocity injuries are more likely to be missed than high velocity injuries.

Further Reading – OrthoBullets


 

Anatomy

The Lisfranc ligament complex is comprised of 3 ligaments. The dorsal (red), interosseous (blue) and the plantar (green) Lisfranc ligaments. The  Interosseous ligament is the largest and the dorsal ligament is the smallest.

The first and second rays have unique ligamentous anatomy wherein no intermetatarsal ligaments exist, but extreme strength is imparted by dorsal, interosseous, and plantar bundles of ligament binding the lateral aspect of the medial cuneiform bone with the medial head of the second metatarsal bone—the Lisfranc ligamentous complex. Only the dorsal and plantar Lisfranc ligaments are accessible to ultrasound.

 

 



 

PoCUS of the Lisfranc joint and dorsal lisfranc ligament (DLL)

Lisfranc injuries are one of the most commonly missed orthopaedic injuries in the Emergency Department. Normal X-rays are often falsely reassuring to providers and patients are discharged with a diagnosis of “soft-tissue injury”. These injuries result in midfoot instability and often require definitive surgical management.

PoCUS has been studied as a method of early detection of these injuries. Specifically, assessment of the dorsal lisfranc ligament (DLL) between the second metatarsal (M2) and the medial cuneiform(C1). PoCUS also has the advantages of being significantly cheaper and more accessible than CT and MRI. Further investigation is needed to validate this method of diagnosis, however ultrasound findings of a disrupted DLL and a widened C1-M2 interval compared to the contralateral side may increase your suspicion when pre-test probability is high.


 

Technique

  1. Linear probe-MSK setting starting at a depth of 2cm
  2. Place probe in transverse orientation over the proximal aspect of the 1st-2nd metatarsals with the probe indicator to the patient’s right
  3. Slide the transducer proximally until you locate the medial cuneiform and identify the junction between the medial cuneiform (C1) and the 2nd metatarsal (M2)
  4. The medial cuneiform will have an angulated contour appearance in contrast to the round appearance of the metatarsals
  5. Sweep to identify the dorsal lisfranc ligament (DLL)
  6. Assess the DLL for a fibrillar pattern, normal echogenicity and contour
  7. Measure the DLL width and the C1-M2 distance compare to the contralateral side
  8. Measure the C1-M2 distance with weightbearing (if patient tolerates) to compare
  9. Apply colour doppler to assess for hyperemia


 

PoCUS Findings

Medial Cuneiform (C1), 2nd Metatarsal (M2)

Note the angulated contour of C1 and the smooth contour of M2 – this sectional plane is important when locating the dorsal Lisfranc ligament. The ligament appears hypoechoic with a fibrillar pattern, typical for other ligaments more commonly visualized with PoCUS e.g MCL, ATFL.

1. Normal image – Arrows = dorsal Lisfranc ligament

2. Normal Clip and annotated image. Note how the dorsalis pedis a. frequently overlies the dorsal Lisfranc ligament (yellow lines)

3. Normal clip. Note how there is no separation of C1/M2 while counterstressing the 1st and 2nd rays


 

4. Thickened, convex contour

5. DLL disrupted, wide joint space

6. Widening C1-M2 with weightbearing


Video Case


 

Limitations

  1. Anisotropy – Irregular dorsal contour of foot can result in difficult perpendicular imaging of doral Lisfranc ligament. Stand-off gel pad may help.
  2. History of prior trauma – chronic Lisfranc injury may result in joint widening
  3. Bilateral injuries – inability to compare sides to judge joint space widening

Application

Standard foot radiographs should be performed in all cases of suspicion for Lisfranc Injury. Weight bearing radiographs should also be performed if tolerated (the ability to fully weight bear is often limited in the acute setting)

HIgh velocity injuries result in significant soft tissue swelling, and although non-weight bearing radiographs may not be diagnostic, the index of suspicion for Lisfranc injury will be high. Immobilization +/- early CT and follow up with foot and ankle specialist is recommended. For these, high pretest probability injuries, PoCUS findings are unlikely to change management significantly. A clear Lisfranc ligament rupture on PoCUS may trigger a request for CT/MRI earlier than otherwise considered. In most cases advanced imaging and a clear diagnosis is not usually possible until the swelling has subsided.

In low velocity injuries, soft tissue swelling is less pronounced. in the acute presentation the ability to perform weight bearing radiographs is limited by pain. Index of suspicion for Lisfranc injury may be low-moderate and the decision to immobilize and refer for specialist follow up can be difficult. While there is limited published evidence for PoCUS test characteristics in Lisfranc injury, a positive scan (injury + disrupted ligament / widening of C1/M2) is likely to be highly specific. Patients with positive PoCUS findings should therefore be immobilized and referred for specialist follow up. In those with negative or inconclusive findings, management and disposition will depend on degree of clinical suspicion and correlated with radiographic findings.

In summary, PoCUS provides a useful additional piece of information that can be plugged into a bayesian diagnostic pathway. What is the pretest probability of a particular diagnosis? After reviewing radiographs and performing PoCUS is the diagnosis more or less likely?

More evidence is required to fully understand the test characteristics of PoCUS for Lisfranc injury. Would the addition of plantar views improve sensitivity?

Although the performing the scan takes only a few minutes, it is quite technically challenging for the novice. As with all MSK PoCUS, repeated practice in numerous patient presentations will increase operator speed and accuracy.


 

Finally, although we still need the cavalry, PoCUS can help us decide which regiment and how quickly we need them!

 


References

  1. Mayich DJ, Mayich MS, Daniels TR. Effective detection and management of low-velocity Lisfranc injuries in the emergency setting: principles for a subtle and commonly missed entity. Can Fam Physician. 2012;58(11):1199-e625. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3498011
  2. Woodward, S., Jacobson, J.A., Femino, J.E., Morag, Y., Fessell, D.P. and Dong, Q. (2009), Sonographic Evaluation of Lisfranc Ligament Injuries. Journal of Ultrasound in Medicine, 28: 351-357.
  3. Döring, S., Provyn, S., Marcelis, S., Shahabpour, M., Boulet, C., de Mey, J., De Smet, A., De Maeseneer, M. (2018). Ankle and midfoot ligaments: Ultrasound with anatomical correlation: A review. Eur J Radiol.107:216-226.
  4. Kaicker, J., Zajac, M., Shergill, R., & Choudur, H. N. (2016). Ultrasound appearance of the normal Lisfranc ligament. Emergency Radiology, 23(6), 609-614.
  5. DeLuca, M.K., Walrod, B. and Boucher, L.C. (2020). Ultrasound as a Diagnostic Tool in the Assessment of Lisfranc Joint Injuries. J Ultrasound Med, 39: 579-587.
  6. Marshall, J., Graves, N.C., Rettedal, D.D., Frush, K., Vardaxis. V. (2013). Ultrasound Assessment of Bilateral Symmetry in Dorsal Lisfranc Ligament. The Journal of Foot and Ankle Surgery, 52(3): 319-323.
  7. Rettedal, D.D., Graves, N.C., Marshall, J.J. et al. Reliability of ultrasound imaging in the assessment of the dorsal Lisfranc ligament. J Foot Ankle Res 6, 7 (2013).
Continue Reading

Detection of Foreign Bodies in Soft Tissue – A PoCUS-Guided Approach

 

Medical Student Clinical Pearl

Sophia Miao, CC4

MD Candidate, Class of 2021

Dalhousie University

 

Reviewed & Edited by Dr David Lewis (@e_med_doc)

All case histories are illustrative and not based on any individual.


 

Case Report

A 33-year-old woman presents to the ED with pain and swelling over the third digit of her right hand.  One week prior to this, she had shattered a jar and a small glass splinter lodged into her finger.  This was promptly removed at home, and the puncture wound healed without intervention.

She presented to the emergency room 7 days later with new pain and swelling surrounding the initial puncture wound.  There is no significant past medical history and most recent Td booster was given 2 years ago.  On examination, there was some mild erythema, swelling, and tenderness on palpation of the lateral aspect of the middle phalanx of the right hand.  She is otherwise well.  You wonder about the possibility of a retained foreign body.


 

PoCUS-Guided Approach to the Detection of Foreign Bodies in Soft Tissue

Foreign bodies in soft tissue are a common complaint in the emergency department, with open wounds comprising 5.7 million (or 4.5% of total) visits to the ED in 2010.[1]  Foreign bodies were found in up to 15% of wounds.[2]  If retained, complications of these include allergic reaction, inflammation, delayed wound healing, damage to adjacent tissue structures, neurovascular damage, tetanus, and infectious complications including cellulitis, necrotizing fasciitis, synovitis, and abscess formation.[3],[4]  Proper detection, and subsequent removal, of retained foreign bodies is therefore essential to evaluate the wound and prevent associated complications.

Diagnosis of a retained FB requires a high index of suspicion.  Clinical suspicion should be raised when there is a compelling history and physical exam.  The latter may include signs of inflammation and/or infection, including warmth, swelling, erythema, tenderness, abscess formation, and discharging wound).[5],[6]

Conventional radiography is known to commonly miss radiolucent materials such as wood and plastic.  It has been shown that plain radiographs have only a 7.4% sensitivity in the detection of wood foreign bodies.5  Remarkably, even glass – a radiopaque material – has been demonstrated to have been missed in up to 35% of x-ray film studies.[7]  There is increasingly compelling evidence for the clinical usefulness and accuracy of bedside ultrasonography in the detection of soft-tissue foreign bodies.  It has been shown to have a specificity of 92% (95% CI = 88%-95%) and sensitivity ranging from 83.3% to 100%.[8],[9]


PoCUS Technique

Probe selection: the use of a high-frequency ultrasound probe is recommended.  This allows for greater axial resolution at the expense of less penetration, which is suitable for the detection of small foreign bodies, as they typically lodge in superficial tissues.[10]

If the wound is open, a transparent covering such as a Tegaderm or probe cover can be used to cover either the wound or probe before scanning.[11]

Medium: standard technique for assessment of soft-tissue structures by ultrasound involves the use of a standoff pad or gel mound.  However, this is not always possible due to the irregular curvature of extremities such as fingers and feet, which may result in poor contact between the probe and skin, decreased field of view, and patient discomfort.  A water-bath technique can circumvent this and has been shown to be superior in such cases.[12]

Method: the area of interest should be scanned in both longitudinal and transverse planes.  Foreign bodies are best detected when the transducer aligns with the longitudinal axis of the foreign body, and therefore revealing the span of the object.[13]  As foreign bodies tend to embed less than 2 cm below the surface of the skin, the depth of field should remain superficial in order to avoid false positives.

US Probe: Ultrasound Water Bath for Distal Extremity Evaluation

 


Findings

Ultrasonography and plain film findings of foreign bodies in soft tissue are summarized in the table below.

Table 1. Ultrasound and x-ray findings of foreign bodies.6,[14],[15],[16]

Material Ultrasound findings X-ray findings
Wood Hyperechoic; may become isoechoic with surrounding tissue as it denatures over time

Posterior acoustic shadowing

Radiolucent, often undetectable
Glass Hyperechoic, bright

Posterior acoustic shadowing

± Posterior comet tail reverberation, diffuse beam scattering

Radiopaque
Plastic Hyperechoic

Posterior acoustic shadowing

Radiolucent, often undetectable
Metal Hyperechoic, bright

Posterior acoustic shadowing

± Posterior comet tail reverberation

Radiopaque

 

Foreign bodies may also display a straight or regular contour.6

 

Image 1 – Wood splinter in volar aspect digit, mildly hyperechoic, surrounding hypoechoic halo, irregular acoustic shadowing

Image 2 – Plastic FB, within tendon sheath, volar aspect digit, brightly hyperechoic, long axis

Image 3 – Plastic FB, within tendon sheath, volar aspect digit, brightly hyperechoic, short axis

 

Image 4 – Glass FB – brightly echogenic, posterior reverberation, FB long axis

 

Image 5 – Metal FB – brightly echogenic, posterior reverberation, FB long axis

 

 

It is important to note that the acoustic shadowing may be complete or partial, as this is dependent on the angle of sonography and foreign body material.[17]  It is also possible to see a hypoechoic halo around the FB, which may be suggest edema, abscess formation, granulation tissue, or other inflammatory process.[18]  As the inflammatory reaction develops, the halo effect becomes more apparent; therefore the foreign body is therefore best visualized by PoCUS several days after the initial injury.6


PoCUS-Guided Foreign Body Removal

There are several options for removal of a foreign body with PoCUS:[19]

  1. Needle localization. Once the foreign body has been identified on PoCUS, a hollow injection needle can be inserted under ultrasound guidance and local anesthetic is delivered through this.  This can be done in either the transverse or longitudinal plane.  The ultrasound probe is then removed, and an incision is made along the needle.  Through the incision site, tweezers or forceps can be used to remove the foreign body.
  2. Real-time ultrasound-guided extraction. This technique is similar to the needle localization method. However, rather than removing the transducer following the needle insertion, the entire procedure is done under direct ultrasound visualization.  The probe is held in the longitudinal plane to visualize both the forceps and the foreign body during the extraction process.

 

There is a risk of obscuring the view of the foreign body on ultrasound with air as a result of the incision itself or through anesthetic delivery.  Saline may be used to irrigate and therefore mitigate the issue.19

The patient’s tetanus status should be verified and updated, if required.  Antibiotic therapy may also be provided, should the risk of infection justify it.


Limitations

There is the possibility of false positives.  Foreign bodies must be differentiated from other hyperechoic body structures, including ossified cartilage, sesamoid bones, scar tissue, gas bubbles, and intermuscular fascia.14  Visualization is therefore important in both longitudinal and transverse planes, as well as comparison with the opposite side.  Acoustic shadowing, hypoechoic halo, and posterior comet tails, if present, can also be indicative of a FB rather than organic body tissue.

Traumatic air injection as a result of penetrating injury can create a scatter artifact on ultrasound, which can be misinterpreted as an acoustic shadow associated with a foreign body.  To differentiate this from a true acoustic shadow, pressure may be applied through the transducer to displace the scatter artifact.6

As is commonplace with all emergency ultrasonography, limitations also include the technical skill of the operator.[20]  A foreign body may also be too small to be detectable by ultrasound.  It is therefore important to remember that a negative scan does not necessarily rule out the possibility of a retained foreign body, and the history and physical examination must be considered in conjunction with the ultrasound findings.

 


 

References

[1] National Center for Health Statistics. Emergency Department Visits. Available from: http://www.cdc.gov/nchs/fastats/emergency-department.htm.

[2] Steele MT, Tran LV, Watson WA, Muelleman RL. Retained glass foreign bodies in wounds: predictive value of wound characteristics, patient perception, and wound exploration. Am J Emerg Med. 1998 Nov;16(7):627-30. DOI: 10.1016/s0735-6757(98)90161-9. PMID: 9827733.

[3] Skinner EJ, Morrison CA. Wound Foreign Body Removal. In:StatPearls. Treasure Island (FL): StatPearls Publishing; 2020. Available from: https://www.ncbi.nlm.nih.gov/books/NBK554447/.

[4] Ebrahimi A, Radmanesh M, Rabiei S, Kavoussi H. Surgical removal of neglected soft tissue foreign bodies by needle-guided technique. Iran J Otorhinolaryngol. 2013 Winter;25(70):29-36. PMID: 24303416; PMCID: PMC3846242.

[5] Levine MR, Gorman SM, Young CF, Courtney DM. Clinical characteristics and management of wound foreign bodies in the ED. Am J Emerg Med. 2008 Oct;26(8):918-22. DOI: 10.1016/j.ajem.2007.11.026. PMID: 18926353.

[6] Atkinson P, Bowra J, Harris T, Jarman B, Lewis D. Point of Care Ultrasound for Emergency Medicine and Resuscitation. Oxford, United Kingdom: Oxford University Press; 2019. DOI: 10.1093/med/9780198777540.001.0001.

[7] Kaiser, C. William MD; Slowick, Timothy MBA; Spurling, Kathleen Pfeifer RN, JD; Friedman, Sissie MA. Retained Foreign Bodies, The Journal of Trauma: Injury, Infection, and Critical Care: July 1997 – Volume 43 – Issue 1 – p 107-111.

[8] Davis J, Czerniski B, Au A, Adhikari S, Farrell I, Fields JM. Diagnostic Accuracy of Ultrasonography in Retained Soft Tissue Foreign Bodies: A Systematic Review and Meta-analysis. Acad Emerg Med. 2015 Jul;22(7):777-87. DOI: 10.1111/acem.12714. Epub 2015 Jun 25. PMID: 26111545.

[9] Atkinson P, Madan R, Kendall R, Fraser J, Lewis D. Detection of soft tissue foreign bodies by nurse practitioner-performed ultrasound. Crit Ultrasound J. 2014 Jan 29;6(1):2. DOI: 10.1186/2036-7902-6-2. PMID: 24476553; PMCID: PMC3922659.

[10] Dean AJ, Gronczewski CA, Costantino TG. Technique for emergency medicine bedside ultrasound identification of a radiolucent foreign body. The Journal of Emergency Medicine. 2003;24(3):303–8. DOI: 10.1016/S0736-4679(02)00765-5.

[11] Chen KC, Lin AC, Chong CF, Wang TL. An overview of point-of-care ultrasound for soft tissue and musculoskeletal applications in the emergency department. J Intensive Care. 2016 Aug 15;4:55. DOI: 10.1186/s40560-016-0173-0. PMID: 27529031; PMCID: PMC4983782.

[12] Krishnamurthy R, Yoo JH, Thapa M, Callahan MJ. Water-bath method for sonographic evaluation of superficial structures of the extremities in children. Pediatr Radiol. 2013 Mar;43 Suppl 1:S41-7. DOI: 10.1007/s00247-012-2592-y. Epub 2013 Mar 12. PMID: 23478918.

[13] Rooks VJ, Shiels WE 3rd, Murakami JW. Soft tissue foreign bodies: A training manual for sonographic diagnosis and guided removal. J Clin Ultrasound. 2020 Jul;48(6):330-336. DOI: 10.1002/jcu.22856. Epub 2020 May 8. PMID: 32385865.

[14] Mohammadi A, Ghasemi-Rad M, Khodabakhsh M. Non-opaque soft tissue foreign body: sonographic findings. BMC Med Imaging. 2011 Apr 10;11:9. DOI: 10.1186/1471-2342-11-9. PMID: 21477360; PMCID: PMC3079678.

[15] Lewis D, Jivraj A, Atkinson P, Jarman R. My patient is injured: identifying foreign bodies with ultrasound. Ultrasound. 2015 Aug;23(3):174-80. DOI: 10.1177/1742271X15579950. Epub 2015 Mar 26. PMID: 27433254; PMCID: PMC4760591.

[16] Campbell EA, Wilbert CD. Foreign Body Imaging. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2020. Available from: https://www.ncbi.nlm.nih.gov/books/NBK470294/.

[17] Anderson MA, Newmeyer WL 3rd, Kilgore ES Jr. Diagnosis and treatment of retained foreign bodies in the hand. Am J Surg. 1982 Jul;144(1):63-7. DOI: 10.1016/0002-9610(82)90603-1. PMID: 7091533.

[18] Little CM, Parker MG, Callowich MC, Sartori JC. The ultrasonic detection of soft tissue foreign bodies. Invest Radiol. 1986 Mar;21(3):275-7. DOI: 10.1097/00004424-198603000-00014. PMID: 3514541.

[19] Paziana K, Fields JM, Rotte M, Au A, Ku B. Soft tissue foreign body removal technique using portable ultrasonography. Wilderness Environ Med. 2012 Dec;23(4):343-8. DOI: 10.1016/j.wem.2012.04.006. Epub 2012 Jul 25. PMID: 22835803.

[20] Pinto A, Pinto F, Faggian A, Rubini G, Caranci F, Macarini L, Genovese EA, Brunese L. Sources of error in emergency ultrasonography. Crit Ultrasound J. 2013 Jul 15;5 Suppl 1(Suppl 1):S1. DOI: 10.1186/2036-7902-5-S1-S1. Epub 2013 Jul 15. PMID: 23902656; PMCID: PMC3711733.

Continue Reading