A Crushing Case – Compartment Syndrome

A Crushing Case – Compartment Syndrome

Resident Clinical Pearl (RCP) March 2019

Mark McGraw– PGY1 FMEM Dalhousie University, Saint John NB

Reviewed and edited by Renee Amiro and Dr. David Lewis.


Case Part 1

Its early afternoon during your ortho call shift and you get a call from emerge staff saying that they have two patients coming with potentially significant injuries when a piece of equipment rolled over during transport. EMS has informed them that one has a broken ankle. When you arrive to the ED he tells you they are just getting the patient’s pain under control and ordering x-rays.

You head to the room to see the patient, a large burly 35 y/o with an obviously deformed R ankle. His exam is otherwise unremarkable at this time, he has good cap refill to the toes, sensation to the web space, dorsum/plantar and medial/lateral surfaces of the foot is intact and he is able to move his toes. On palpation his lower leg compartments are firm but not hard. An x-ray is done at bedside and shows a Weber Type B fracture of the fibula. His pain seems to be increasing as you speak with him and he has no significant past medical history. He tells you he was loading a piece of equipment when it got away from them and rolled over his leg pinning him momentarily, so he was hanging off a piece of equipment by the leg. Your exam is limited by pain and you ask the nurse if she can give the patient some more pain medication and you’ll return as soon as you see the other patient.


Clinical Pearl: Compartment Syndrome

Compartment Syndrome occurs when the pressure within a muscle compartment exceeds the pressure needed to adequately perfuse tissue. It is considered a true orthopedic emergency and delays in diagnosis and treatment can result in the loss of a patient’s life or limb

Anatomy/Pathophysiology

-Muscle compartments are bound by bone or fascia, two restrictive tissues that create a relatively fixed volume compartment with a very limited ability to compensate for any increase in fluid volume.

-When a traumatic or pathological process results in increased fluid within a muscle compartment the pressure within the compartment increases. This increase in pressure results in reduced arteriovenous pressure gradient (reduced arterial pressure and increased venous pressure) that impairs tissue perfusion within the compartment.

  • As the pressure rises within the compartment capillary flow declines resulting in an enhanced local blood vessel permeability which further increases compartment pressures. If pressures continue to rise tissue ischemia and necrosis will develop.
  • Time for tissue necrosis to occur will vary from patient to patient it can occur in as little as 3 hours and most literature suggests that a fasciotomy must be performed within 4 hours of the onset of ACS to prevent irreversible damage.2

 

 

Signs and Symptoms

Compartment syndrome is a true orthopedic emergency and early recognition of its clinical signs is critical in preventing irreversible tissue damage, rhabdomyolysis, and limb loss.

  1. Pain out of proportion
  2. Pain with passive stretch
  3. Paresthesia
  4. Pain at rest
  5. Paresis

 

  • Severe pain out of proportion to the examination and pain with passive stretching are the first symptoms of ACS to occur. While the early signs are 97% specific for ACS they are only 19% sensitive in the absence of other findings.

  • The combination of pain with passive stretch, paresthesia, and pain with rest has been reported to be 93% sensitive and if paresis is present the sensitivity increases to 98%1. Unfortunately, paraesthesia and paresis are late findings of ACS and delaying the diagnosis until they are present can result in unacceptable delays in treatment. Once a motor nerve deficit has occurred patients will rarely recover function after fasciotomy.

Diagnosis 1

  • Normal compartment pressures are between 8 and 10mmHg in adults and 10-15mmHg in children.
  • 30mmHg is diagnostic for compartment syndrome and should prompt an orthopedic referral when combined with clinical symptoms of compartment syndrome.
  • An alternative is to calculate a differential compartment pressure for an individual patient as factors such as hypertension, peripheral vascular disease and patient medication can cause a large variance in individuals compartment pressures.
  • Differential compartment pressure is calculated by the diastolic blood pressure minus the intra-compartmental pressure if this is under 20mHg then fasciotomy is indicated.
  • If the patient is alert and able to elevate the affected limb, serial examinations over a two-hour period may prevent unnecessary fasciotomies. This should be done in consultation with your orthopedic colleagues.

 

Measuring compartment pressures

Devise: dedicated compartment manometer (Stryker Intra-Compartmental Pressure Monitor) or by using IV tubing and an ART line transducer attached to a long needle.

Who is most at risk of developing compartment syndrome?

  1. Fractures represent 70% of all cases5.
  2. Fractures of the tibial diaphysis account for 40% of all cases in North America.
  3. Open fractures of the tibia are still high risk for compartment syndrome because the opening is insufficient to relieve the compartment pressure associated with the fracture.6

Management of potential compartment syndrome in the ED

  1. Supplemental oxygen if indicated
  2. Remove all cast material, clothing or wraps around the limb
  3. Elevate the limb to the level of the hear
  4. Apply ice to the affected limb if the compartment syndrome is secondary to trauma.
  5. Definitive treatment is a surgical fasciotomy.

 

Case Part 2

You return to see the patient and nursing staff tell you they are unable to get the patients pain under control despite significant amounts of narcotics.

The examination of the lower leg is repeated and the compartments of the leg feel the same however the patient is unable to move his toe. He reports significant pain on passive flexion and extension of the great toe. You call your staff to inform her of the change in the patient and that you are concerned about compartment syndrome and she requests compartment pressure measurements using the Stryker Kit. The senior resident performs the compartment pressure measurements with you and you record pressures of 14, 14 and 25mmHg.

In discussion with the staff you decide to leave the leg on a posterior slab unwrapped, at the level of the heart, and with ice applied 20 on 20 off and perform serial examinations. The serial examinations are unremarkable and the patients pain becomes manageable. The patient is brought to the OR approximately 5 hours later for ORIF of his distal fibula. Compartment pressures are repeated in the OR and were 12, 10, 32 mmHg. An ORIF is performed and you perform serially examinations on the patient q1h overnight. The patient is discharged the following day


Case Follow Up

The patient had significant leg pain on discharge and subsequently presented to the ED on POD#7 for significant leg swelling. Ultrasound was performed to rule out DVT and the patient was discharged for follow up in clinic. He did not go on to develop any further complications.


 

Bottom Line

Compartment syndrome is an important not to miss diagnosis. It should be considered in any hard to control limb pain, especially when associated with fracture.


 

References

  1. 1.Duckworth, A. D., & McQueen, M. M. (2017). The Diagnosis of Acute Compartment Syndrome: A Critical Analysis Review. JBJS Reviews, 5(12), e1. https://doi.org/10.2106/JBJS.RVW.17.00016
  2. Long, B., Koyfman, A., & Rdms, M. G. (2019). Clinical Review. Journal of Emergency Medicine, (December 2018), 1–12. https://doi.org/10.1016/j.jemermed.2018.12.021
  3. McQueen, M. M., & Court-Brown, C. M. (1996). Compartment monitoring in tibial fractures. The pressure threshold for decompression. The Journal of Bone and Joint Surgery. British Volume, 78(1), 99–104.
  4. McQueen, M. M., Duckworth, A. D., Aitken, S. A., Sharma, R. A., & Court-Brown, C. M. (2015). Predictors of Compartment Syndrome After Tibial Fracture. Journal of Orthopaedic Trauma, 29(10), 451–455. https://doi.org/10.1097/BOT.0000000000000347
  5. Stella, M., Santolini, E., Sanguineti, F., Felli, L., Vicenti, G., Bizzoca, D., & Santolini, F. (2019). Aetiology of trauma-related acute compartment syndrome of the leg : A systematic review. Injury, (2018). https://doi.org/10.1016/j.injury.2019.01.047
  6. Strohm, P. C., & Su, N. P. (2004). Acute compartment syndrome of the limb, 1221–1227. https://doi.org/10.1016/j.injury.2004.04.009
Continue Reading

An approach to the unexpected pregnancy

Resident Clinical Pearl (RCP) – March 2019

Renee Amiro – PGY2 FMEM Dalhousie University, Saint John NB

Reviewed by Dr. David Lewis

 

As Emergency Physicians we perform a number of pregnancy tests on women of childbearing age presenting to our care. It is an important part of our practise to screen for life threatening conditions like ectopic pregnancy and also avoid giving medications or preforming investigations that could be harmful to a fetus.

As with any medical test that we do, there are sure to be surprise results that we, or the patients, were not expecting.

A positive BHcG is not always a positive result for a patient we are treating. It is important as medical providers to handle this situation in an empathetic way and be armed with information to help the patient with this potentially life changing information.

An approach to an unexpected pregnancy result:


1. Ensure that the patient either has a support person with them, or if they wish, is alone. This is still confidential information and should be treated as such.
2. After informing the the patient of the pregnancy test result, it can be helpful to assess whether this is a wanted pregnancy. This can help you to assess what information you are going to provide her.
3. If it is an unwanted/surprise pregnancy it is helpful to inform her of her options.
      a. Continue the pregnancy to term
      b. Abortion
      c. Adoption


Since continuing with the pregnancy and adoption will be a long-term navigation and not necessarily time sensitive these discussions are better carried out in primary care / family practice. However, the options for pregnancy termination that are available in Canada and specifically New Brunswick are time sensitive.

It is crucial that patients who are considering these options be provided with accurate and timely information about their legal choice to end a pregnancy. Physicians who are unable to provide this information, for whatever reason, are expected to pass this responsibility on to a physician who can in a time sensitive manner.

Abortion options available in Canada:

 


Information for Patients considering termination of pregnancy


Surgical Abortion:
Abortion is decriminalized. There is no actual legal limit on the gestational age on which abortions can be performed.
Most intuitions in Canada have their own gestational age cut offs and the majority of abortions done in Canada are before 20wks.
The early on in the pregnancy generally the safer the procedure.

Advantages: once you’ve had the procedure it is done.
Disadvantages: you have had to have a d&c (dilation and curettage) and although relatively safe, there are always risks associated with surgical procedures.

 

Medical Abortion:
Medications used are Mifepristone and Misoprostol.
Mifepristone blocks progesterone which is a hormone responsible for maintaining a pregnancy.
Misoprostol is a medication taken up to 48 hours after the mifepristone and causes uterine contractions that empty the uterus.
The process is often described as like having a really heavy and crampy period.
Advantages: No surgical procedure, so can be done in your own home.
Disadvantages: more prolonged, may require more follow up with physicians, can’t be done past 9 weeks.

In New Brunswick: the drug can only be obtained with a prescription from a doctor who has completed the six-hour training required to prescribe it. It’s unclear how many New Brunswick doctors have the training.
You must have a valid health card and an ultrasound showing your gestational age to have the drug covered by the province.

 

Options available in New Brunswick:

Clinic 554 (Fredricton NB)
Able to self refer
Phone Number 506-261-7355
Patients can expect a 5-10-minute intake appointment over the phone.
Counselling, ultrasound and doctor’s exam are all done in the same visit as the abortion so you would only have to travel once.
Surgical are preformed up to 15wks and 6days.
Medical up to 9 weeks.
Cost between 700-850$ for surgical abortion.
Medical abortions are free.

Bathurst Chaleur Regional Hospital (Bathurst)
Able to self refer
Phone number 506-544-2133
Surgical abortions are available up to 13wks 6days.
Hospital based surgical abortions are free of charge.

Dr. Georges Dumont University Hospital Center (Moncton) – French
Able to self refer
Phone number 506-862-2770
Surgical abortions are available up to 13wks and 6days.
Hospital based surgical abortions are free of charge.


The Moncton Hospital- English
Able to self refer
Phone number 1-844- 806- 9205
Surgical abortions are available up to 13wks and 6days.
Hospital based surgical abortions are free of charge.
For options available in every province in Canada please see this list:
http://www.arcc-cdac.ca/list-abortion-clinics-canada.pdf

 

Copyedited by Dr. Mandy Peach

Continue Reading

What’s the word? Insertion of Word catheter for Bartholin’s cysts

Resident Clinical Pearl (RCP) February 2019

Renee AmiroPGY3 FMEM Dalhousie University, Saint John NB

Reviewed by Dr. David Lewis. Copyedited by Dr. Mandy Peach

Bartholin gland are located in the vulva and are a common cause of vulvar masses.
The normal function of the Bartholin gland is to secret mucus to lubricate the vagina. These ducts can get blocked and cause fluid accumulation can cause a cyst or abscess.

Anatomy of the vagina (2)
Identifying a bartholin gland cyst (3)

Treatment:
The mainstay of management is incision and drainage with insertion of a ward catheter. The ward catheter allows the cyst to continue to drain and allow re-epithelization of the Bartholin gland allowing the duct to stay patent in future.

Indications:
Presence of an uncomplicated Bartholin’s cyst.

Contraindications:
Latex allergy – the ward catheter is made with latex.

Materials:
Alcohol swabs or other solution to clean the area.
Sterile gloves
Local anesthetic
Scalpel with an 11 blade
Gauze (+++)
Haemostat to breakup loculations
Culture swab
Ward Catheter
Syringe filled with H2O to fill the ward catheter.

Procedure

  1. Sterilize area with sterilizing solution.
  2. Inject local anesthetic in to the area that you are going to stab for the incision ~1-3cc.
  3. Stab the cyst or abscess. Make the incision about 5mm big and 1.5cm deep. Too big an incision could cause the ward catheter to fall out.
  4. Drain the cyst/abscess and breakup any loculations with the haemostat.
  5. Place the ward catheter into the incision and inflate with 2-3cc of water.
  6. Tuck the end of the ward catheter in to the vagina to minimize discomfort.
Technique for insertion of word catheter (4)

Follow up:
Pelvic rest for the duration of the time the ward catheter is in place.
Sitz baths and mild analgesia (Tylenol/Advil)

Duration of ward catheter placement is on average four weeks.

If the ward catheter falls out prior to the tract being re-epithelialized or the cyst or abscess remains the patient may need another placement of the ward catheter or follow up marsupialization procedure (obstetrics). If the area looks well healed, the ward catheter can be kept out.

Role of antibiotics:
In uncomplicated skin abscesses there has been no benefit shown from antibiotic treatment. Using an antibiotic without and I and D will not heal the Bartholin glad cyst.

Antibiotics indicated in:
High risk of complicated infection – surrounding cellulitis, pregnancy, immunocompromised.
Culture positive MRSA
Signs of systemic infection

Bottom Line:

  1. Ward catheter placement is essential if you are going to drain a Bartholin’s abscess. If you don’t the patient may loose patency of the duct which could have long term consequences such as dyspareunia.
  2. Antibiotics alone will not cure a Bartholin’s abscess. Only indicated in limited situations.

References

  1. Uptodate: Bartholin gland masses: Diagnosis and Management https://www.uptodate.com/contents/bartholin-gland-masses-diagnosis-and-management?search=bartholin%20cyst&source=search_result&selectedTitle=1~10&usage_type=default&display_rank=1
  2. Bartholin Gland Cysts: https://www.health.harvard.edu/a_to_z/bartholins-gland-cyst-a-to-z
  3. Bartholin Gland Cysts: https://www.merckmanuals.com/en-ca/home/women-s-health-issues/noncancerous-gynecologic-abnormalities/bartholin-gland-cysts
  4. Bartholin Gland Abscess or Cyst Incision and Drainage: https://accessemergencymedicine.mhmedical.com/content.aspx?bookid=683&sectionid=45343783

Continue Reading

Trauma Reflections – December 2018

Thanks to Dr. Andrew Lohoar and Sue Benjamin for leading the discussions this month


Major points of interest:

A)  TXA – “When did this MVA actually happen?”

Only 75% of cases receiving TXA are receiving it within 3 hours of injury. And only ½ of theses cases are having the drip started.

CRASH study found patients receiving TXA after 3 hours do not benefit.

B)   Bleeding on warfarin

If emergent reversal of anti-coagulation from warfarin is needed, vitamin K (5-10mg) should be given IV (not PO), along with PCC.

C)  Trauma transfers from outside of our region in the post TTL era..

Consultants accepting transfers from other regions through NB trauma line may request that patient stop in ED first for evaluation/imaging prior to transfer to floor or ICE.

The consultant should make every effort to evaluate their patient on arrival to ED  

Expectation is that TCP and/or consultant clearly delineate their plan with ED charge MD.   

E) Matthew 4:1:1  “Man shall not live by [RBCs] alone”

I might not have gotten that one quite right, but the MTP policy follows a 4:1:1 rule – after 4th unit of PRBCs, give a unit of platelets and FFP.

F) This guy is bleeding all over my triage room!

Patients occasionally “self-present” to triage with significant injuries or a history of a high energy MOI. The most efficient way to mobilize resources is to have the triage RN call a “Trauma CODE”.   

G)  Analgesia in pediatric population

Pain management in pediatric population is often challenging. If IV access is delayed consider alternative routes – intranasal fentanyl 1.5 ug/kg using MAD (mucosal atomizing device).

H)  May the hoses R.I.P.

Chest tube sizes 36 F and 345F are now no longer being stocked on chest tube cart.

I)     Post-intubation sedation

Post intubation sedation and analgesia can be challenging. Key is to avoid starting medications that could potentially drop blood pressure at very high infusion rates, but we need sedation and analgesia promptly.

Consider bolus of sedatives and analgesics prior to initiating infusions and prn boluses afterwards. Inadequate analgesia is often the cause of continued agitation.

Continue Reading

Syncope ECG – The ABCs

ECG Interpretation in Syncope

Resident Clinical Pearl (RCP) – December 2018

Dr. Luke Taylor, FMEM PGY3 –  Dalhousie University, Saint John NB

Reviewed by Dr. David Lewis

 

What are you looking for on the ECG of the patient with syncope?

Quick review of frequently pimped question on shift!

Two approaches – One using systematic ECG analysis, the other a mnemonic.

ECG Analysis (1)

Standard format of rate, rhythm, axis, and segments (PR, QRS, QT, ST).

Method of calculating heart rate (2)

Rate: Simple — Is the patient going too fast or too slow? *Remember this easy way to check:
Rhythm: Look at leads II, VI and aVR for P waves.
Ask yourself:
Are they upright in II/VI and inverted in aVR?
Does a QRS follow every P and a P before every QRS?

If so likely sinus rhythm.

In the setting of syncope we are looking to see if there is any signs of heart block – a P wave not conducted to a QRS, especially being sure not to miss a Mobitz type II block.

Axis: Axis comes in to play when looking for more extensive conduction disease. Is there axis deviation along with a change in your PR and BBB indicating something like a trifasicular block?

Segments:

PR interval— is it looooong (heart block) or short (reentrant)?
Long has already been discussed in looking for signs of heart block, but a short PR may be indicative of Wolf-Parkinson-White or Lown-Ganong-Levine syndromes.

WPW – look for short PR and delta wave
LGL – short PR but no delta wave due to its conduction being very close to or even through the AV node and not through an accessory pathway.

QRS Morphology analyzing this for signs of Brugada, HOCM, WPW, ARVD, pericardial effusion, and BBB.

ECG findings of Brugada (3)

Type 1: Coved ST segment elevation with T wav inversion
Type 2: Saddleback ST segment elevation and upright T waves
Type 3: either above without the ST elevation

QT interval — is it looooong (R on T) or short (VT/VF risk)?
Long is >450 men, 470 women
Short < 330ms – tall peaked T waves no ST segment
Pearl for long – should be less than half the RR interval. —>

Normal relationship of R-R and QT interval (4)

 

ST segment — think MI or PE (rare causes of syncope but need to be considered)
MI – elevations or depressions

PE – Tachycardia, RV strain, T-wave inversion V1-V3, RBBB morphology, S1Q3T3

 

Mnemonic (5)

ABCDEFGHII

A — Aortic stenosis
Go back to patient and listen!
B — Brugada
C — Corrected QT
D — Delta wave
E — Epsilon wave as in Arrhythmogenic Right Ventricular Dysplasia (ARVD)

Epsilon: Small positive deflection (‘blip’) buried in the end of the QRS complex (6)

F — Fluid filled heart
Pericardial effusion, electrical alternans, low voltage throughout
G — Giant PE
H — Hypertrophy
LVH in someone who shouldn’t have it
I — Intervals
PR, QRS, QT
I — Ischemia

 


Looking for a Basic ECG Guide? See our Med Student Pearl Here:

Medical Student Clinical Pearl – Basic ECG Interpretation

 


 

References

  1. CanadiaEM – ECGs in Syncope https://canadiem.org/medical-concept-ecgs-in-syncope
  2. https://en.ecgpedia.org/wiki/Rate
  3. ECG Waves https://ecgwaves.com/brugada-syndrome-ecg-treatment-management
  4. https://www.healio.com/cardiology/learn-the-heart/case-questions/ecg-cases/question-3-5
  5. Hippo EM Education Shorts https://www.youtube.com/watch?v=raTTYV7_Asl
  6. https://en.ecgpedia.org/index.php?title=Arrhythmogenic_Right_Ventricular_Cardiomyopathy

 

This post was copyedited by Dr. Mandy Peach

Continue Reading

Epistaxis Management in the ED – 3 Step Method

Epistaxis Management

Resident Clinical Pearl (RCP) – December 2018

Luke Taylor R3 FMEM, Dalhousie University, Saint John, New Brunswick

Reviewed by Dr. Kavish Chandra

 

It’s 0300 and you are on a solo night shift when a 76 year old male with blood dripping out of both nares is brought into an examining room. It looks a little more profuse than what you saw on Stranger Things last month, but you are also wondering how to best tackle this very common emergency problem

 

History

-Laterality, duration, frequency

-Estimated blood loss, presence of any clots?

-Inciting factors such as trauma or coagulopathy

-Past medical history, especially hypertension, clotting disorder, HHT

-Medications such as anticoagulants or anti-platelets

 

Physical examination

-Have patient blow nose or use suction to clear clots

-Do not try and visualize until decongestion complete

-Visualize with nasal speculum for site of bleeding. If an anterior bleed, most commonly the bleeding site will be Little’s area (Figure 1)

-See below for management if patient’s ABCs stable. If unstable be prepared to secure airway and call for help – ENT/interventional radiology

 

Figure 1. Nasal vascular anatomy, adapted from https://www.juniordentist.com/what-is-littles-area-or-kiesselbachs-area-and-the-arteries-in-it.html.

 

Management

-Get IV access, draw CBC and coagulation profile when indicated

-Treat as unstable until proven otherwise

 

Pearls

  • Apply ice to the hard palate (popsicles, ice in the mouth) to reduce nasal blood flow up to 25%
  • TXA in patients on anti-platelets (primarily aspirin) results in faster cessation of bleeding
  • Ducanto suction in future -> SALAD technique – Ducanto-bougie intubation for large bleeds
  • Only reverse anticoagulants if absolutely necessary – “local problem, local solution”

 

Three Step Approach to Epistaxis

1. Visualize and decongest

  1. Have patient blow their nose to clear all clots
  2. Visualize nasal cavity and oropharynx now and with each reassessment for source of bleeding. Don’t forget to wear mask and use a headlamp
  3. Soak cotton balls or pledgets in lidocaine with epinephrine and 500mg of tranexamic acid
  4. Pack nose with soaked cotton and replace clamp for 10 mins

2. Cauterize

  1. Remove clamp and packing
  2. Area should be well blanched and anesthetized
  3. Visualize plexus and cauterize proximal to bleeding area for 10 sec max AND never both sides of septum (higher risk of septal perforation)
  4. If successful and bleeding ceases on reassessment, apply surgicel wrapped around a small piece of surgifoam to create a “dissolvable sandwich”and discharge home

3. Tamponade

  1. Apply unilateral nasal packing (Rapid Rhino, Merocel, etc)
  2. Reassess in 10 mins, visualizing oropharynx for continued bleeding
  3. If stops, can discharge home with packing in place and follow up in ED or ENT clinic in 48hrs for removal. No antibiotics required in immunocompetent patients.
  4. If continues to bleed, move the patient to a higher acuity area and apply bilateral nasal packs

When to call ENT

If bilateral nasal packing bleeding continues, assume posterior bleed and initiate resuscitation, draw labs (CBC, coagulation profile, cross-match if not already done). Reverse known coagulopathy and consult for OR or embolization.

 

ED Rounds – Epistaxis

 

 

References:

Dr Christopher Chin and his informative talk

http://rebelem.com/topical-txa-in-epistaxis/

https://emergencymedicinecases.com/ent-emergencies/ 

https://lifeinthefastlane.com/epistaxis/

 

This post was copyedited by Kavish Chandra @kavishpchandra

Continue Reading

Scalp Lacerations – “You Can Leave Your HAT On!”

You can leave your “HAT” on: An approach to scalp lacerations and review of the hair apposition technique

Resident Clinical Pearl (RCP) – November 2018

Devon Webster – FMEM PGY1, Dalhousie University, Saint John, New Brunswick

Reviewed by Dr. David Lewis

 


Quick case!

Joe Cocker and Randy Newman had an altercation while debating who recorded the best version of “You can leave your hat on”. Randy won (mainly because he is still alive), but unfortunately he sustained a nasty head injury in the process. You deduce that he does not require a CT head but he’s got a 7 cm lac over his scalp. What should you do next?

 

Review of scalp anatomy:

The scalp is divided into 5 layers, which can conveniently be recalled using the mnemonic, SCALP:

  • Skin

    Ref 1

  • dense Connective tissue
  • Aponeurosis
  • Loose connective tissue
  • Periosteum

 

Recall that the dense connective tissue layer is richly vascularized. The tight adhesion of these vessels to the connective tissue inhibits effective vasoconstriction, hence the profuse bleeding often seen with scalp wounds.

The loose connective tissue layer = the DANGER ZONE when lacerated. This layer contains the emissary veins, which connect with the intracranial venous sinuses. Consequently, lacerations reaching this layer are high risk for spreading infection to the meninges

 

 

 

Examining the laceration:

Ref 2

Prior to choosing the most appropriate closure technique, the wound should be cleaned and cleared of debris and the depth of the wound should be determined.

  • Superficial wounds: generally do not gape and have not gone beyond the aponeurosis. Adherence to the aponeurosis should prevent the wound edges from separating.
  • Deep wounds: gape widely due to laceration of the aponeurosis in the coronal plane. Tension secondary to the occipitofrontalis muscles will pull the wound open in opposite directions.

 

Ref 2

(A) Scalp laceration that extends through the aponeurosis
(B) CT showing an associated skull fracture

 

Choosing a closure technique:

A. The HAT technique: Hair Apposition Technique

What it is: A fast and simple technique for superficial laceration closure whereby the physician twists hair on either side of the laceration together and seals the twist with a drop of glue for primary closure. Various advantages, as described below, including no need for follow up suture or staple removal.

When to use it: Consider using HAT for linear, superficial lacerations, <10 cm that have achieved appropriate hemostasis (assuming the patient has hair!).

The evidence for HAT: An RCT based out of Singapore, comparing suturing (n=93) to HAT (n=96) for scalp lacerations <10 cm found HAT to be equally acceptable if not superior to suturing. Patients were more satisfied (100% vs 75%), had less scarring (6.3% vs 20.4%), fewer complications (7.3% vs 21.5%), lower pain scores (2 vs 4), shorter procedure times (5 vs 15 min) and less wound breakdown (0% vs 4.3%) (Ref 4)

A follow up study by the same group assessing cost-effectiveness of HAT compared to suturing found a cost savings of $28.50 USD (95% CI $16.30 to $43.40) in favor of HAT when taking into consideration materials, staff time, need for removal appointments and treatment of complications (Ref 5)

A retrospective observational study comparing HAT (n=37) to suturing (n=48) and stapling (n=49) also found HAT to be superior to both suturing and stapling due to increased patient satisfaction at days 7 and 15, reduced pain, lower cosmetic issues and complication rates (Ref 6)

 

How to do HAT (see diagram):

  1. Choose 4-5 strands of hair in a bundle on either side of laceration
  2. Cross the strands
  3. Make a single twist to appose the wound edges
  4. Secure with a single drop of glue
  5. Advise patient that the glue will eventually come off on its on and no formal removal is required.

Cautions with HAT: avoid getting glue into the wound as it may result in wide scarring with a bald spot (Ref 3)

 

B. Wound Staples

If the HAT technique is not an option (no glue, bald, etc) and the lac is superficial (above the aponeurosis), staples are preferred over suturing due to Ref 3:

  • Rapid closure of wound edges
  • Non-circumferential wound closure avoid potential strangulation
  • No cross hatch marks
  • Less expensive

C. Wound Sutures

Sutures are appropriate for deep, gaping wounds or those requiring immediate hemostasis.

Suture is required for lacerations through the aponeurosis to reduce spread of infection, hematoma formation and increased scarring. Furthermore, inadequate repair of the aponeurosis may result in asymmetric contraction of the frontalis muscle (Ref 3)

 

 

Final thoughts post-closure:

  • White petroleum ointment is as effective as antibiotic ointment in post-procedural care (Ref 7). Furthermore, the next time you consider handing out bacitracin (or polysporin), recall that it was declared ‘contact allergen of the year for 2003’ by the American Contact Dermatitis Society. Bacitracin is among the top ten allergens in the US causing allergic contact dermatitis (Ref 8).
  • Wetting the wound as early as 12 hrs post-repair does not increase the risk of infection (Ref 7). Consider delaying wetting in the case of HAT.

Bottom line:

  • For superficial lacerations, <10 cm with adequate hemostatic control, the hair apposition technique is a fast, cost-effective method of wound closure with high patient satisfaction, reduced pain and lower complications compared to suturing and staples.
  • Lacerations through the aponeurosis require suturing to reduce rates of complications.
  • Consider use of petroleum jelly over antibiotic containing ointments such as polysporin.

 

Video

 


 

References:

 

1 Hunt, W. “The Scalp.” Teachmeanatomy.info. Last updated Oct 24, 2018. Accessed Nov 28, 2018. URL:  https://teachmeanatomy.info/head/areas/scalp/

2 Dickinson, E. Uptodate. Accessed Nov 28, 2018 URL: https://www.uptodate.com/contents/image?imageKey=EM%2F87633&topicKey=EM%2F16696&source=see_link

3 Hollander, J. “Assessment and management of scalp lacerations.” Uptodate. Updated Feb 23, 2018. Accessed Nov 28, 2018. URL: https://www.uptodate.com/contents/assessment-and-management-of-scalp-lacerations

4 Ong ME. “A randomized controlled trial comparing the hair apposition technique with tissue glue to standard suturing in scalp lacerations (HAT study).” Annals of Emergency Medicine. July 2002. 40:1. 19-26.

5 Ong ME. “Cost-effectiveness of hair apposition technique compared with standard suturing in scalp lacerations.” Annals of Emergency Medicine. 2005 Sept; 46(3):237-42.

6 Ozturk D. “A retrospective observational study comparing hair apposition technique, suturing and stapling for scalp lacerations.” World J Emerg Surg. 2013; 8:27.

7 Forsch, R. “Essentials of skin laceration repair.” American Family Physician.

8 Fraser, J. “Allergy to bacitracin.” Dermnet NZ. September 2015. Accessed on Nov 28, 2018 URL: https://www.dermnetnz.org/topics/allergy-to-bacitracin/

 


 Randy:

 

Joe:

 

 

Continue Reading

Arterial bleeding

Approach to Arterial Bleeding in the Upper Extremity

Resident Clinical Pearl (RCP) – November 2018

Tara DahnCCFP-EM PGY3, Dalhousie University, Halifax NS

Reviewed by Dr. David Lewis

This post was copyedited by Dr. Mandy Peach

You are working a shift in RAZ when a pair of paramedics wheel a man on a stretcher into one of the procedure rooms. He is sitting upright and looking around but his entire left forearm and hand are wrapped in towels, which are taped tightly down. “I don’t know what’s hurt but there was a lot of blood”, he says when questioned. He had been using a reciprocating saw in his workshop.

Vital signs: T 36.5, HR 90, BP 135/90, RR 18, O2 sats 98% on RA

You ask the nurses to find a tourniquet to put around the patients arm as you start unwrapping his giant towel mitt. You get down to the skin and find a deep 1 inch transverse laceration along the radial side of the wrist. Initially there is no active bleeding, you gingerly pock the wound and …Ooops… immediately bright red pulsatile blood starts pumping out from the distal wound edge and your scrubs will need to be change before you see the next patient.

Approach to arterial bleeding in upper extremity

Life over limb

  • Get control of the bleeding and if needed focus on other more pressing injuries. Start resuscitation if needed
  • There is no bleeding in the extremity that you can’t stop with manual compression.
  • If you can’t spare a person to compress artery then consider a tourniquet. (see Table 1 on tourniquets)
  • Avoid blindly clamping as nerves are bundled with vascular structures and can be easily damaged.

 

Determine if arterial bleeding/injury exists

Look for hard or soft signs of arterial injury (See Table 2)

If hard signs of arterial injury in major vessel the patient will need operative care. Imaging is not required unless site of bleeding is not clear (and patient is stable).
If there are soft signs of arterial injury do an Arterial Pressure Index (see Box 1) to help determine if there is an underlying arterial injury.
o If API >0.9: Patient unlikely to have an arterial injury. Observe or discharge based on nature of injury/patient.
o If API < 0.9: Possible arterial injury. Patient will need further investigation, preferably by CTA.

  • API is recommended over ABI (Ankle Brachial Index) in lower extremity injuries. ABI compares lower extremity SBP to brachial SBP. Usually patients will have more atherosclerotic disease in their lower extremities, which can falsely elevate their ABI and make it harder to detect a vascular injury. The API, on the other hand, relies on the fact that the amount of atherosclerotic disease is usually symmetric between the two upper and two lower extremities.
  • API is a very good test. An API less than 0.9 has a sensitivity and specificity of 95% and 97% for major arterial injury respectively, and the negative predictive value for an API greater than 0.9 is 99% (Levy et al., 2005).

Consider vessel injured

  • A good understanding of vascular anatomy is important to identify which vessel is injured. See figures 1 and 2.

Figure 1: Upper Extremity Arteries
(https://web.duke.edu/anatomy/Lab12/Lab13_preLab.html)

Figure 2: Lower Extremity Arteries
https://anatomyclass01.us/blood-vessels-lower-limb/blood-vessels-lower-limb-arteries-in-the-lower-leg-human-anatomy-lesson

Examine distal extremity well.

  • In the excitement of pulsatile bleeding it can be easy to be tempted to skip/rush this. But with bleeding controlled remember that the extremities are much less picky about blood supply than your vital organs. You can take a few minutes to examine the distal limbs neurovascular status (blood supply, sensory and motor, tendon integrity) and should as this will be important for management decisions.
  • Arterial injuries can very often be accompanied by nerve and tendon injuries. Complete a full assessment. See Figures 3 &4 for neurologic assessment of hand.
  • Most disability following arterial injuries is not due to the actual arterial injury, but due to the accompanying nerve injury (Ekim, 2009).

Figure 3: Motor examination of the hand. 1 – Median nerve. 2- Ulnar nerve. 3- Radial nerve (Thai et al., 2015)
Figure 4: Sensory innervation of the hand and nerve locations (Thai et al., 2015)

Explore wound carefully

  • It is important to explore the wound carefully to look for other structures damaged.
  • Examine tendons and muscles by putting their accompanying joints through a full ROM to see partial lacerations that may have been pulled out of sight.

Control bleeding definitively

Proximal arterial injuries (brachial artery, proximal radial/ulnar artery)

-All brachial artery injuries will require urgent repair by vascular surgeon.
-The “golden period” is 6-8 hours before ischemia-reperfusion injury will endanger the viability of the limb (Ekim, 2009). Degree of ischemia depends on whether injury is proximal or distal to the profunda brachii (Ekim, 2009)
-Larger more proximal arteries are rarely injured alone and will nearly all have nerve/tendon/muscle injuries also requiring operative repair

Forearm/hand arterial injuries
-Many arterial injuries in/near the hand will NOT require operative repair as there are very robust collaterals in the hand with dual blood supply from the radial and ulnar arteries in most people.

-Steps to management
Manual direct digital compression: 15 minutes direct pressure without interruption will often be successful on its own.

Temporary tourniquet application and wound closure with running non-absorbable suture followed by compact compressive dressing. If vessel obviously visible may try tying off but blindly clamping/tying will likely injury neighboring structures, particularly nerves.

Operative repair may be required if bleeding cannot be controlled with above measures.
Studies have shown that in the absence of acute hand ischemia, simple ligation of a lacerated radial or ulnar artery is safe and cost effective (Johnson, M. & Johansen M.F., 1993) however some surgeons may still opt to perform a primary repair.

 

Approach for our case

Life over limb

Patient was hemodynamically stable at presentation. IV access had already been obtained by the paramedics. Bleeding was controlled with direct pressure. When visualization was required at the site of the wound a tourniquet was used.

Determine if arterial bleeding
Our patient had a clear hard sign for arterial bleeding- pulsatile blood

Consider vessel injured
Our patients pulsatile bleeding was coming from the distal edge of the wound. Leading us to conclude that it was pulsing retrograde from the palmar arch (See Figure 5 for more detailed anatomy).

Examine distal extremity well
Our patient had a completely normal sensory and motor exam of his hand as well as normal tendon function. Lucky!

Explore wound carefully
A tourniquet was needed to properly visualize and explore the wound. There were no other injured structures identified.

Control the bleeding definitively
Direct pressure for 15 minutes did not stop the bleeding. The ends of the vessel were not identified on initial wound inspection. The wound was extended a short distance (~1cm) in the direction of the bleeding but still the vessel was not identified.

Plastic surgery was consulted. They extended the wound another 3 cm distally and were able to identify the artery, which had been transected longitudinally. They concluded that it was likely the radial artery just past the superficial palmar branch. The hand was well perfused and thus the artery was ligated. The wound was irrigated well, closed and the patient was discharged with a volar slab splint and follow up.

 

References:

Ekim, H. & Tuncer, M. (2009). Management of traumatic brachial artery injuries: A report on 49 patients. Ann Saudi Med. 29(2): 105-109.

Johnson, M. & Johansen, M.F. (1993). Radial or Ulnar Artery Laceration – Repair or Ligate? Arch Surg 128(9), 971-975.

Levy, B. A., Zlowodzki, M.P., Graves, M. & Cole, P.A. (2005). Screening for extremity arterial injury with the arterial pressure index. The American Journal of Emergency Medicine, 23(5), 689-695.

Thai, J.N. et al. (2015). Evidence-based Comprehensive Approach to Forearm Arterial Laceration. Western Journal of Emergency Medicine, 16(7), 1127-1134.

Life in the Fast Lane: Extremity arterial injury

Tinntinalli’s Emergency Medicine

 

This post was copyedited by Dr. Mandy Peach

Continue Reading

Trauma Reflections – October 2018

Thanks to Dr. Andrew Lohoar and Sue Benjamin for leading the discussions this month

 


Major points of interest:

 

A)  Intubated patients should not need restraints..

Post intubation sedation and analgesia can be challenging. Key is to avoid starting medications that could potentially drop blood pressure at very high infusion rates, but we need sedation and analgesia promptly.

Consider bolus of sedatives and analgesics prior to initiating infusions and prn boluses afterwards. Inadequate analgesia is often the cause of continued agitation.

 

B)   But what about this guy with the BP of low / really low?

Consider “vitamin K” – ketamine – can augment BP in patients who are not catecholamine depleted.

 

C)  Trauma patients you know will require consultants

When services are known to be required for patients prior to arrival (intubated, critical ortho injuries, penetrating trauma, transfers etc.) call a level A activation – consultants should meet patient with you. Give the consultants notice when patient is 15 minutes out.

Required consultants need to attend to critically injured in a timely fashion. Escalate to department head or chief of staff if there is unreasonable delay.

View the SJRHEM Trauma Page for list of definitions including Trauma Team, Activation Levels etc

 

E) Managing the pediatric airway – adrenalizing for all involved

Pediatric trauma is the pinnacle of a HALF (high acuity, low frequency) event. Team approach is key. Get out the Broselow tape.

Bradycardia with intubation attempts is not infrequent in youngest patients. Consider atropine as pre-med if  < 1 year of age or < 5 years of age and using succinylcholine.

 

F) MTP

Do not forget platelets and plasma if onto 4th unit of PRBCs – 4:1:1 ratio.

 

G)  Where is this patient being admitted?

Not to the hospitalist service, that is where!

Patients with significant injuries, but not needing immediate surgical intervention, should be admitted/observed in ICE x 24 hrs. Department head and/or chief of staff are available to assist if needed.

 

H)  Chest tube types and sizes

Pigtail catheters for traumatic pneumothorax are effective, less painful and are gaining favour as an alternative to traditional chest tubes. As for sizes, there is likely little benefit for 36F over 32 F catheters – probably time to retire these monsters from the chest tube cart.

I)     Why do bedside U/S if patient about to go to CT?

Chest scan might prompt chest tube placement prior to CT if pneumothorax is identified. Although identifying blood in the abdomen prior to CT may not change your management – it may prompt an earlier call to general surgery.

Continue Reading

The Acute Scrotum

What to do when the balls are in your court:

An Approach to the Acute Scrotum

Resident Clinical Pearl (RCP) – October 2018

Devin Magennis – Family Medicine, PGY2, Dalhousie University, Charlottetown PEI

Reviewed by Dr. David Lewis

 

The acute scrotum is a syndrome characterized by intense, new onset scrotal pain which can be accompanied by other symptoms such as inflammation, abdominal pain, or fever3. The incidence of acute scrotal pain is highest under the age of 153, yet it can occur at any age.  To successfully diagnosis and manage the patient with an acute scrotum it is useful to formulate a differential diagnosis using the I VINDICATE mnemonic.

Table 1- Differential diagnosis for scrotal pain organized using I VINDICATE format. The diagnoses in bold are or have the potential to be life-threatening or testicle threatening. The diagnose in Italics are common.

 

 

Review of Clinically Relevant Anatomy:

It is important to remember that during development the testicles originate in the posterior abdominal wall before migrating down into the scrotum4. Consequently, testicular pathology can present not just as scrotal pain but also as: flank pain, abdominal pain or inguinal pain2.

Once in the scrotum, the testicle sits in a vertical lie. The anterior portion of the testicle adheres to the scrotal wall via the tunica vaginalis. The tunica vaginalis is double-layered. Between these layers is a potential space for fluid to collect. Along the postero-lateral aspect of the testicle is the epididymis. It originates at the postero-superior pole, runs along the lateral aspect of the testicle down to the inferior pole4

 

Figure 1- Anatomy of the testicle. Right side of photo is anterior, left side is posterior

 

When trying to localize a patient’s symptoms it helps to divide the genital tract into segments: lower segment and the upper segment. The lower genital tract consists of the urethra. While the upper genital tract consists of the testicles, epididymis and prostate.

 

 

Testicular torsion

In a patient presenting with an acute scrotum the most important diagnosis to consider is testicular torsion1-5. Classic teaching states testicular torsion occurs in the perinatal period and during puberty. and Reported will be: sudden onset of severe unilateral testicular pain within 12 hours of presentation1. Patients will typically have had similar previous episodes, feel nauseated, may have vomited and occasionally have a history of trauma1. On inspection there will be scrotal erythema; a swollen, high-riding testicle with a horizontal lie. On palpation of the testicle it would be found to be exquisitely tender and the cremasteric reflex would be absent.

Unfortunately, testicular torsion usually does not present as described above2.  In one case series 1 in 5 patients diagnosed with testicular torsion had only abdominal pain and no scrotal pain2. While in another case series 7% of patients diagnosed with testicular torsion presented with complaints of dysuria and/or urinary frequency. Furthermore, other acute scrotal conditions have considerable overlap with the classic description of torsion2. Both epididymitis and torsion of the testicular appendage can present with sudden onset of pain2. Patients with any scrotal condition can have an absent cremasteric reflex as it is absent in 30% of the population and just to make matters more confusing, multiple case series report patients with testicular torsion still having an intact cremasteric reflex1.

 

Approach

What to ask the patient with an acute scrotum:

  • Characterize the pain
  • Location: testes, epididymis (postero-lateral aspect of testicle), upper pole of testes
  • Onset: sudden vs gradual
  • Frequency of pain
  • Radiation
  • Intensity
  • Duration
  • Events associated: trauma; dysuria, urethral discharge and urinary frequency; sexual history
  • Constitutional symptoms
  • Medical history: GU abnormalities, Recurrent UTIs, Diabetes, Alcoholism, Steroid use
  • Recent Catheterization or instrumentation of urinary tract
 

 

Physical exam for the acute scrotum

1)      Inspection:

  • Symmetry and size of testicles
  • skin erythema
  • blue dot at upper pole of testicle
  • Unilateral vein engorgement

2)      Palpation:

  • Determine site of maximal tenderness and check for masses
    • Testes
    • Epididymis
    • Upper pole of testes
    • Inguinal canal
    • McBurney’s point, Cost-vertebral angle or another abdominal or flank location

3)      Ultrasound to rule-out AAA in patients over 50

 

Management

 

The Bottom Line

  1. Testicular torsion is the one diagnosis that must be made quickly and accurately to avoid the loss of a testicle.1
  2. The classic teaching that testicular torsion can be diagnosed on history and physical exam alone is a myth. If you suspect torsion get an ultrasound and consult urology.2
  3. Torsion becomes exceedingly rare over the age of 25; however it is still possible.1
  4. Abdominal aortic aneurysm, appendicitis, nephrolithiasis and other causes of abdominal and flank pain can present as scrotal pain. Testicular torsion can present as abdominal or flank pain.2

 

References:

  1. Jefferies MT, Cox AC, Gupta A, Proctor A. The management of acute testicular pain in children and adolescents. BMJ. 2015;350:h1563. doi: 10.1136/bmj.h1563 [doi].
  2. Mellick LB. Torsion of the testicle: It is time to stop tossing the dice. Pediatr Emerg Care. 2012;28(1):80-86. doi: 10.1097/PEC.0b013e31823f5ed9 [doi].
  3. Lorenzo L, Rogel R, Sanchez-Gonzalez JV, et al. Evaluation of adult acute scrotum in the emergency room: Clinical characteristics, diagnosis, management, and costs. Urology. 2016;94:36-41. doi: 10.1016/j.urology.2016.05.018 [doi].
  4. Drake R, Vogl AW, Mitchell AWM. Gray’s anatomy for students. Saint Louis: Elsevier; 2014. Accessed 8/11/2018 11:47:58 AM.
  5. Rottenstreich M, Glick Y, Gofrit ON. The clinical findings in young adults with acute scrotal pain. Am J Emerg Med. 2016;34(10):1931-1933. doi: S0735-6757(16)30284-4 [pii].

 

 

This post was copyedited by Dr. Mandy Peach

Continue Reading

EM Reflections – October 2018

Thanks to Dr. Paul Page for leading the discussions this month

Edited by Dr David Lewis 

 


 

Top tips from this month’s rounds:

 

Trauma – Secondary Survey

DNAR Considerations 

ED Neonatal Equipment

 


Trauma – Secondary Survey

The secondary survey is performed once the primary survey and resuscitation has been completed.

The secondary survey does not begin until the primary survey (ABCDEs) is completed, resuscitative efforts are underway, and the normalization of vital functions has been demonstrated. When additional personnel are available, part of the secondary survey may be conducted while the other personnel attend to the primary survey. In this setting the conduction of the secondary survey should not interfere with the primary survey, which takes first priority. ATLS 9e

This means that on occasions trauma patients may be transferred to the OR or ICU before the secondary survey has been completed. The secondary survey is a thorough head to toe examination including where indicated adjunct investigations e.g limb radiographs. This assessment must be carefully performed and documented. It should not be rushed.

If there is not enough time to complete a thorough secondary survey (e.g patient transferred to OR during primary survey) then this should be communicated to the surgeon or other responsible physician (e.g ICU) and the documentation should reflect this.

We would recommend that all trauma patients admitted to the ICU undergo a repeat secondary survey assessment as part of the standard admission process. In some systems this is referred to as a Tertiary survey.

This systematic review reports a reduction missed injury rate when a tertiary survey is used as part of a trauma system.

Trauma.org article on tertiary survey


DNAR Considerations 

The CMPA provides excellent guidance for clinicians considering Do Not Attempt Resuscitation orders. CMPA Website

CMPA – Key Concepts for End of Life Issues

  • The best interests of the patient are paramount.

  • The capable patient has the right to consent to or refuse medical treatment, including life-sustaining treatment.

  • Thoughtful and timely advance care planning, discussion, and documentation of a patient’s wishes and healthcare goals can help avoid misunderstandings.

  • Physicians should be familiar with any relevant laws and regulatory authority (College) policies concerning end-of-life care, and the withholding or withdrawing of life-sustaining treatment, and medical assistance in dying.

  • When considering placing a do-not-resuscitate order in the medical record, or acting upon a do-not-resuscitate order, consent from the patient or substitute decision-maker is advisable. It may also be helpful and appropriate to consult with physician colleagues and the patient’s family to determine support for the order.

  • Decisions about withholding or withdrawing life-sustaining treatment that is considered futile or not medically indicated should be discussed with the patient, or the substitute decision-maker on behalf of an incapable patient. When consensus is not achieved despite discussions with the substitute decision-maker, the family, and others such as ethics consultants, patient advocates, and spiritual advisors, it may be necessary to make an application to the court (or an administrative body) or seek intervention from the local public guardian’s office.

  • Physicians considering a request for medical assistance in dying should be familiar with the eligibility criteria set out in the Criminal Codewith applicable provincial legislation, and with applicable regulatory authority (College) guidelines.

  • Physicians should be familiar with the role of advance directives (including living wills).

  • End-of-life decisions should be carefully documented in the patient’s medical record.

Horizon Health, NB uses these accepted Canadian DNAR definitions:

 


 

ED Neonatal Equipment

Perinatal Services BC, Canada have published an excellent document – Standards for Neonatal Resuscitation

It includes this Appendix for suggested Radiant Warmer Equipment checklist:

 

Continue Reading

Trauma Reflections – August 2018

Thanks to Dr. Andrew Lohoar and Sue Benjamin for leading the discussions this month

 


 

Major points of interest:

 

A) Blood is important stuff…so keep track of it.

Recent ATLS guidelines are suggesting switching to blood for resuscitation after one litre crystalloid bolus, not two. We will be using blood more often and it is important to keep track of amount ordered and infused. Give clear orders, document, and send any unused units back to transfusion medicine.

 

B) Analgesia/anti-emetics prior to leaving for diagnostic imaging

Moving on/off DI tables can increase pain or provoke nausea in some patients.

 

C) Who put that thing there?

If you decide to put something into your patient, such as a chest tube or ET tube, then write a procedure note, including details of placement confirmation.

 

D) Trauma patients you know will require consultants

When services are known to be required for patients prior to arrival (intubated, critical ortho injuries, penetrating trauma, transfers etc.) call a level A activation – consultants should meet patient with you. Give the consultants notice when patient is 15 minutes out.

In pediatric traumas that cannot be managed locally use the NB Trauma TCP to coordinate transfers to IWK.

 

E) Yo-yoing to DI for yet another film

“Pan-scanning” a younger patient can be a difficult decision, but if there is a high energy MOI and indication for spine imaging, CT scan is the superior imaging choice.

 

F) Pregnancy tests for everybody

Do not forget this in ‘older’ pediatric age group.

 

G) “Moving all limbs”..

..is NOT an acceptable documentation of exam findings in a patient with suspected neurologic injury. Thorough exam to detect any deficits is needed for neurologic baseline and for comparison later. Dermatome level of sensory dysfunction, key muscle group strength (0-5 scale) and anal sphincter tone should all be recorded, with time of exam.

 

H) Severe traumatic brain injury

Remember the CRASH 3 study – adult with TBI < 3hrs from time of injury.

 

I) Motorcycle + cocaine + EtOH + no helmet…

Equals an agitated head injured patient very difficult to sedate after intubation. Consider fentanyl infusion in addition to sedation infusion.

 

 

Continue Reading