Dr. David Lewis – Professor of Emergency Medicine

Dr. David Lewis – Professor

 

A huge congratulations goes out to Dr. David Lewis on his recent promotion to the rank of Professor of Emergency Medicine within Dalhousie University!

This is no small feat – candidates are examined by both internal and external reviewers in the areas of academics, teaching, collegiality and personal integrity. Those reaching the title of Professor must have demonstrated significant career development and contribution to the university in their chosen field.

It comes as no surprise that Dr. Lewis was successful – he is a foundational member of our local department and a forward-thinking leader, he is actively involved in supervision and review of national research in emergency medicine, he is revolutionizing how medical students learn ultrasound – and he does all this while maintaining a love for the field and a positive energy.

Congratulations Dr. Lewis!

Continue Reading

Elbow Injuries

EM Reflections April 2021 – Elbow Injuries

 

 

Thanks to Dr. Joanna Middleton for leading this month’s discussions.

All cases are imaginary but highlight important learning points.

Authored and copyedited by Dr. Mandy Peach

A 25 yo male presents to the ED with his R arm in a makeshift sling. He’s complaining of elbow pain post fall while trail running in a local park. He describes slipping downhill on some loose terrain and landing with his arm hyperextended behind him as he tried to grab a branch. He is otherwise healthy and takes no medications. His vital signs are within normal limits with the except of a HR of 102, which you attribute to pain. The nurse has placed an IV.

You begin your examination of the R elbow. You see significant swelling of the joint and some superficial abrasions. The joint does not feel warm to the touch. There is no overt bleeding.

Other than palpation for focal tenderness and assessing range of motion, what are some important tips for a focused elbow exam1?

Eliminating gravity when testing flexion/extension so pain is less likely to hinder your exam findings. To do this have the patient point their elbow at you, while the forearm is parallel to the floor and have them flex/extend in this plane2.

Remember to test for supination and pronation – this is also a key part of the elbow exam and assessing both with patient’s arms tucked into their sides can help reveal more subtle injuries. Asking the patient to point their thumbs up can make assessing ROM compared to the ‘normal’ side easier to see.

You examine your patient and they cannot fully extend the elbow, even after pain control. What is the significance of this3?

Your patient needs imaging. The ‘elbow extension test’ can help predict the likelihood of fracture. In both adult and pediatric patients presenting within 72 hours of injury, those who could not fully extend the joint had a 48% chance of fracture, while that percentage decreased to 2% if the patient could fully extend the joint.

How can supination and pronation be helpful in picking up on injury1?

Subtle injuries can be found such as radial head or neck fracture. This ROM brings the radial head out during examination.

An Essex-Lopresti fracture-dislocation is another potential injury: a fracture-dislocation injury involving the radial head (fracture) and DRUJ – distal radioulnar joint (dislocation)4. These are important to identify as they require immobilization with the patient’s limb in supination.

The patient has difficulty with supination and pronation secondary to pain. You are concerned for a radial head injury. On exam he has diffuse tenderness of the joint and you have difficulty identifying landmarks as they are lost – you are concerned about an elbow dislocation as well.

What are potential neurovascular injuries involved with such a significant elbow injury5?

Important neurovascular structures associated with the elbow joint are the brachial artery, radial artery, ulnar artery, median, radial, and ulnar nerve.

The most common injury to the elbow is radial head fractures. The mechanism is usually FOOSH or direct trauma5.

You proceed with a neurovascular exam. Radial and ulnar pulse are palpable, capillary refill is 2 seconds.

What is an easy way to remember the nerve testing for elbow injury1?

You complete your neurovascular exam and send the patient for XR’s. You suspect there will be significant injury.

You quickly review normal elbow anatomy on lateral XR with your learner on shift7.

You point out two important lines in the lateral view of the XR

  1. Anterior humeral line: A vertical running drawn on the anterior surface of humerus. This must run down to intersect middle 1/3rd of CAPITELLUM
  2. Radiocapitellar line : it runs through the central radius and passes the central capitellum on a normal image. Important: this rule applies to EACH image, so not only a purely lateral image

You also point out that that in the AP view the radiocapitellar line should also be drawn and should intersect the central capitellum.

By now your patient’s XR is up for review8.

First you notice the elbow luxation – neither your anterior humeral line or radiocapitellar line intersects the capitellum.
You also can see a radius head fracture.

What other injury should you be concerned about1?

After any proven or suspected radial head injury always look for the second injury. Here you have obvious luxation, but you should also examine the coranoid process and anterior ulna for any subtle irregularity indicating fracture. Coranoid fractures tend to be associated with elbow luxation and often indicate an unstable joint.

On history the mechanism of injury is FOOSH or hyperextension of the elbow.

The mechanism fits and your patient does have both radial head fracture and luxation. You examine the coranoid and notice that the trochlear is not completely smooth. You diagnose a coranoid fracture as well.

What is the significance of these injuries1?

This patient has the ‘terrible triad’ of the elbow.

  • Radial head/neck injury
  • Luxation of the elbow
  • Coranoid fracture

This requires orthopedic consultation immediately – it is an unstable joint. You reexamine neurovascular status again and confirm the limb is still perfused and intact before immobilization. You place the patient in a posterior long arm splint with the forearm in supination and discuss with orthopedics on call.

 

 

You pick up the next chart and there is another elbow pain. It looks like the patient was already sent for XR in triage and is now back and in the orthopedic room. This is a 16 yo female who was participating in an orienteering competition. She tripped while running on a tree root and sustained a FOOSH injury. She describes the grade being on a downward slope and felt her entire weight fall forward onto her wrist. She is otherwise healthy. Her vitals are within normal limits.

You initially examine the patient and see the following, what are the clues that this is a posterior elbow dislocation1,9?

When standing behind the patient you can see the olecranon sitting posteriorly behind the humerus.

You are palpating the elbow for tenderness – in the normal elbow the medial condyle, lateral condyle and olecranon should form a symmetrical triangle. Here they do not – this is suggestive of subluxation/dislocation of the elbow.

You assess neurovascular status and find no abnormalities.

What are the other types of dislocations? Which is most common10?

Posterior is the most common. 50% have associated fractures.

You look at the XR11:

This is a frank posterior dislocation – but, what are clues of subtle subluxations1?

“A smooth, symmetric clear space around the trochlea, similar to assessing the clear space of the ankle mortise.”

What about if your patient described a “popping sensation” during the injury and the XR appears normal1?

Sometimes patients can dislocate and  relocate before presentation to the ED. Although there is no bony injury the mechanism is associated with significant ligamentous injury and should be immobilized.

You prepare for sedation and elbow reduction. You consent the patient and the parent, perform an airway assessment and gather the team.

What are methods to reduce an elbow dislocation?

Before deciding to reduce ensure there are no vascular or neurological deficits and no open fracture/dislocation – this would require immediate orthopedic consultation10.

Your patient is neurovascularly intact and it is a closed dislocation.

Traction-Countertraction1

  1. The patient is seated sitting up
  2. Place the forearm in supination – this allows the trochlea to pass more easily over the coronoid process of the olecranon
  3. Elbow is flexed 30 degrees with an assistant immobilizing it and applying counter traction at the middle or distal end of the humerus
  4. Apply downward traction to the distal forearm

Doesn’t work? Try applying downward pressure at the mid-forearm and the olecranon posteriorly while maintaining in-line traction12

Still no luck1?

While standing at the posterior aspect of the humerus hook the fingers of both hands anterior to the condyles and put both thumbs on the olecranon at the junction with the triceps. Try and push the olecranon up over the trochlear.

Modified Simson12

  1. The patient is in a prone position with the affected arm handing over the side of the bed
  2. Slow downward force is applied on the wrist while the opposite hand attempts to guide the olecranon back into place.
  3. If a second provider is available they can manipulate the olecranon.

 

Which method works best?

I don’t think there is much evidence that one is better than the other! Traction-countertraction is the most commonly described method in the literature.

Working single coverage in a rural area with only one nurse who is doing cardiorespiratory monitoring and administering meds? The Modified Simson can be single provider. If the patient is compliant and not sedated then they can provide counter traction while holding the flexed elbow over the chest12.

 

Another option when you’re flying solo is the Leverage Technique12
1. Gently supinate the patients forearm
2. Interlock your fingers with the patients
3. Place your elbow against the distal potion of the patient’s biceps
4. Slowly draw the patient’s wrist into flexion while using your own elbow as a fulcrum.
5. Use your other hand to apply lateral or medial force as needed

One small study found this technique to be superior to traction-countertraction.

At the end of the day, elbow reductions can be tricky. Having more than one technique in your back pocket can be helpful.

 

You and your learner choose the traction-countertraction method and “clunk” – so satisfying.

How do you immobilize now1?

Immobilize at 90 degress of flexion with a padded backslab.

You arrange for ortho follow up – as this was a simple dislocation with no fracture you ensure the appointment is within 3 weeks as this is the maximal period the joint should be immobilized.

For complicated dislocations associated with fracture – ortho should see within 72 hours as they require ORIF.

The patient has recovered from sedation and is asking what to expect in terms of prognosis for this dislocation1.

In simple dislocations that are reduced and immobilized you advise the patient that they will be unable to extend beyond 30 degrees for 6 weeks, and that it may take up to 3 months before full extension is regained. Given that this is an athletic patient you advise her not to return to weight bearing exercises before 4 months unless directed safe by ortho in follow up.

 

 

You grab one last chart with your learner – surprise! It’s a 50 yo male with an elbow injury. He tripped while doing sprints as part of a work out and fell with arm fully extended in front of him. He is otherwise healthy and his vital signs are within normal limits.

On initial examination there is no obviously deformity. The limb is neurovascularly intact.

You palpate the elbow and there is tenderness over the radial head.

You ask the learner to palpate the radial head, they are unsure where. How do you help guide them1?

You describe the triangle between:
– The lateral aspect of the olecranon
– The lateral condyle (anterior to olecranon)
– Radial head

You also suggest examination in supination and pronation as this can bring out the radial head.

You remember your previous case of the terrible triad and go on to examine the coronoid – there is no concern of injury and the elbow doesn’t grossly appear dislocated.

You order XRs – what are some findings associated with radial head injury1?

  • Disruption of the surface of the radial head
  • Anterior sail sign
  • Posterior fat pad
  • Disruption of the radiocapitellar line

Your patient’s lateral XR13

You see both anterior sail sign and a posterior fat pad, so although no obvious fracture is seen of the radial head you diagnose a radial head fracture.

How long does this patient need to be immobilized for1?

Most fractures are not surgical. They are treated with a sling. Do not immobilize for more than 3 weeks or chronic elbow stiffness can ensue.

What if there was a visible fracture through the radius? How do you know which fractures will require ORIF and more urgent ortho evaluation1?

The 30-3-33 rule

30 degrees angulation
3 mm displacement of the fracture fragment
33% surface area of the radial head involved

References for further reading:

  1. Helman, A. Sayal, A. Dantzer, D. Ten Pitfalls in the Diagnosis and Management of Elbow Injuries. Emergency Medicine Cases. March, 2019. https://emergencymedicinecases.com/elbow-injuries. Accessed [date]
  2. https://www.hep2go.com/exercise_editor.php?exId=36147&userRef=gciaake
  3. Appelboam A, Reuben A D, Benger J R, Beech F, Dutson J, Haig S et al. Elbow extension test to rule out elbow fracture: multicentre, prospective validation and observational study of diagnostic accuracy in adults and children BMJ 2008; 337 :a2428 doi:10.1136/bmj.a2428
  4. https://www.startradiology.com/internships/orthopedics/elbow/x-elbow/index.html
  5. (2) Tintinalli, JE, Stapczynski JS, Ma OJ, Yealy D, Meckler GD, Cline DM. 9th ed. Tintinalli’s Emergency Medicine: A Comprehensive Study Guide. New York: McGraw-Hill.
  6. Cornelis, A (2017). Elb-‘ow’! Does my patient with an elbow injury require an x-ray? Resident Clinical Pearl. Emergency Medicine, Saint John. http://sjrhem.ca/rcp-elb-ow-patient-elbow-injury-require-x-ray/
  7. https://www.startradiology.com/internships/orthopedics/elbow/x-elbow/index.html
  8. https://www.orthobullets.com/trauma/1021/terrible-triad-injury-of-elbow
  9. https://litfl.com/elbow-dislocation/
  10. Paris (2016). Elbow Dislocation. Core EM. https://coreem.net/core/elbow-dislocation/
  11. Oppenheim, Osborn (2016). Posterior Elbow Dislocation. Journal of Education & Teaching of Emergency Medicine. DOI: https://doi.org/10.21980/J8X593
  12. Michael Gottlieb, Jessen Schiebout (2018). Elbow Dislocations in the Emergency Department: A Review of Reduction Techniques. The Journal of Emergency Medicine. Volume 54, Issue 6; Pages 849-854. ISSN 0736-4679 https://doi.org/10.1016/j.jemermed.2018.02.011.
  13. https://radiopaedia.org/articles/sail-sign-elbow-1

 

Continue Reading

A Case of Herpes Simplex Virus Keratitis in The Emergency Department

A Case of Herpes Simplex Virus Keratitis in The Emergency Department – A Medical Student Clinical Pearl

Patrick Gallagher, MED III

MUN Class of 2022

Reviewed by Dr. Robin Clouston

Copyedited by Dr. Mandy Peach

Case

A 53-year-old female presents to the emergency department with a two-day history of left-eye pain, which she describes as “something being stuck in her eye.” The patient endorses left eye tearing, pruritis, and photophobia. She notes that her eye has been “blurry” since she awoke this morning. The patient denies any infectious symptoms at present but states that a cold sore erupted on her upper lip seven days ago. She does not use contact lenses.

Past medical history: T2DM and hypothyroidism.

Past surgical history: None.

Medications: Metformin 500 mg OD and Synthroid 125 mcg OD.

Physical exam:

Upon inspection, the patient has conjunctival injection and tearing in the left eye. Mild periorbital edema and erythema is noted. The patient’s pupils are equal and reactive to light, and visual acuity is 20/20 in the left eye and 20/40 on the left eye. Extraocular eye movements and visual fields are normal. The patient has decreased corneal sensation.

On slit lamp examination using fluorescein-based dye, a small branching dendritic ulcer was seen (Figure 1).

Figure 1: Dendritic ulcer noted on slit-lamp exam with fluorescein-based dye.

 

What is the differential diagnosis of dendrites?

• Herpes simplex keratitis
• Acanthamoeba keratitis
• Other keratitis caused by Varicella zoster virus (VZV), cytomegalovirus (CMV), Epstein–Barr virus (EBV), or adenovirus.
• Dendritiform keratopathy
• Ramous epithelial changes
• Limbal stem cell deficiency
• Drug induced corneal changes (epinephrine, antivirals, beta-blockers) 1,2

Herpes simplex virus keratitis :

Herpes simplex is a DNA virus that can cause a wide variety of infections, most commonly involving the mouth, genitalia, and eyes3. While HSV-1 and HSV-2 can involve the eye, HSV-1 is the most common cause of keratitis1. Herpes simplex keratitis (HSK) is characterized by recurrent infections of the corneal epithelium and stroma2. HSK can be classified as primary or recurrent and further divided into three subtypes: epithelial, stromal, and endothelial3. Epithelial keratitis is the most commons subtype of ocular herpes (50% to 80%)2.

Herpes simplex virus (HSV) infections are the leading cause of infectious corneal blindness in developed countries3. It is estimated that 1.5 million people worldwide experience HSV keratitis every year2.

Pathophysiology:

Primary HSV eye infections occur when the virus enters mucous membranes by direct contact. This initial infection is usually subclinical, but it can cause unilateral blepharitis, follicular conjunctivitis, and occasional epithelial keratitis (Figure 2)4. The initial infection is typically asymptomatic, and it occurs in children less than five years old5.

Figure 2: Pictorial representation of blepharitis (inflammation of the eyelid), keratitis (inflammation of cornea), conjunctivitis (inflammation of conjunctiva), and ocular anatomy. Diagram retrieved from 7

After the initial infection, the virus can remain latent in the ophthalmic division of the trigeminal ganglion for the lifetime of the host. HSV reactivation in the latently infected ganglia can lead to corneal scarring, thinning, stromal opacity, and neovascularization5. The cumulative effect of numerous infections results in vision loss and eventually blindness if left untreated.

History and physical:

Diagnosis of HSK is primarily diagnosed by clinical presentation on slit lamp exam using fluorescein and either rose bengal or lissamine green3. However, it is crucial to complete a thorough history and physical exam to narrow the differential diagnosis (Table 1).

Table 1: Key points on history and physical

Figure 3: Slit-lamp corneal findings for patient’s diagnosed with HSV epithelial keratitis. A: Classic dendritic lesion with terminal bulbs. B: More advanced dendritic lesion presenting as geographic ulcer. Figure modified from 6.

Investigations:

The diagnosis of HSVK is based off of clinical findings and does not require additional investigations; however, for atypical lesions, polymerase chain reaction has been used to confirm HSVK. Enzyme-linked immunosorbent assay and viral cultures are also effective in the diagnosis of the HSVK subgroups3.

Treatment/management of HSVK in the emergency department:

In the emergency department, typical findings on the slit lamp exam is diagnostic for epithelial HSVK.

Care providers should initiate treatment immediately to reduce the risk of complications; however, the patient must be referred to ophthalmology within the next few days for follow-up.

Topical and oral antiviral treatments effectively treat epithelial HSVK, although no topical ophthalmic antivirals are currently available in Canada7. It is crucial to adjust the dose of oral antivirals according to the patient’s renal function. See Table 2 for available oral antiviral treatments. For symptomatic management, artificial tears or eye lubricants can ease eye discomfort and over-the-counter analgesics can help relieve pain7.

Table 2: Oral antiviral treatment for epithelial HSVK in adults. Modified from 7

Back to the case:

Given our patient’s classic symptoms of epithelial HSVK (conjunctival injection, tearing, vision changes, foreign body sensation, photophobia, hx of HSV infection) and finding of dendritic ulcers on slit lamp examination, we treated this case as epithelial HSVK until proven otherwise. Therefore, we prescribed the patient valacyclovir 1000mg PO TID and arranged an urgent ophthalmology consult for the following day.

References:

  1. Roozbahani, M., & Hammersmith, K. M. (2018). Management of herpes simplex virus epithelial keratitis. Current opinion in ophthalmology, 29(4): 360-364.

  2. Wilhelmus, K. R. (2015). Antiviral treatment and other therapeutic interventions for herpes simplex virus epithelial keratitis. Cochrane Database of Systematic Reviews, 1.

  3. Azher, T. N., Yin, X. T., Tajfirouz, D., Huang, A. J., & Stuart, P. M. (2017). Herpes simplex keratitis: challenges in diagnosis and clinical management. Clinical Ophthalmology, 11:185–191.

  4. Sibley, D., & Larkin, D. F. (2020). Update on Herpes simplex keratitis management. Eye, 34: 2219–2226.

  5. Toma, H. S., Murina, A.T., Areaux, R.G., Neumann, D.M., & Bhattacharjee, P.S. (2008). Ocular HSV-1 Latency, Reactivation and Recurrent Disease. Seminars in Ophthalmology, 23(4), 249–273.
  6. Leon, S., & Pizzimenti, J. (2017). Be a Hero to Your HSVK Patients. Review of Optometry-Leadership in clinical care. Retrieved from https://www.reviewofoptometry.com/article/ro0717-be-a-hero-to-your-hsvk-patients2
  7. Institut national d’excellence en santé et en services sociaux. (2018). Herpes Simplex Eye Disease. INESSS Guides. Retrieved from https://www.inesss.qc.ca/fileadmin/doc/INESSS/Outils/GUO/Herpes/Guide_HerpesSimplex_web_EN_VF.pdf

 

Continue Reading

When you catch more than fish – Fish Hook Removal

When you catch more than fish – a Resident Clinical Pearl on Fish Hook Removal

Melanie Johnston

PGY2, FMEM Program, Dalhousie University

Reviewed & Copyedited by Dr. Mandy Peach

Introduction

Fishing is a common recreational activity in the Maritime provinces and fishhook injuries are common presentations among both recreational and commercial fishers, particularly during the warm weather months. Individuals may try to remove the fishhook themselves prior to presenting to the emergency department. While some may be successful, many will require evaluation and management in the emergency department for removal.

The majority of fishhook injuries are penetrating soft tissue injuries involving the hands, feet, or head, but can involve any body part.1 Most injuries involve superficial structures because of the forces applied to the fishing line that drive the barb parallel to the skin and keep it from penetrating deeper structures. There are four commonly used techniques to remove fishhooks, and the choice of technique will depend on the body part affected, depth of penetration, and the type of fishhook.2

Initial Evaluation

To determine the most appropriate technique for removal:

  • Determine what type of fishhook was being used (shape, size, # of hooks, location and # of barbs)
  • Perform a thorough neurovascular exam both proximal and distal to wound
  • Assess penetration depth; if difficult to assess, radiographs should be utilized for further evaluation (rule out bone and joint involvement)
  • Determine if tetanus immunization status is up to date

Figure 1: Types of fishhooks (A) Simple single barbed fishhook, (B) Multiple- barbed fishhook, (C)Treble fishhook.1

Complicated Fishhook Injuries

While the majority of fishhook cases are uncomplicated, those that require specialist referral and follow-up include:
– fishhook injuries involving the eyeball or orbit
– fishhook injuries with joint/tendon involvement
– fishhook injuries involving vital structures (carotid, radial artery, testicle, urethra)

In these cases, specialist consultations are warranted prior to fishhook extraction.1-3

Figure 2: Fishhook injury involving eye.5

Preparation for Fishhook Removal

Wound preparation: remove any additional materials attached to the fishhook (fishing line, lures, weights) using scissors/wire cutters. Surrounding skin should then be cleansed (betadine, chlorhexidine, saline irrigation).1

Pain control: Local or regional anesthesia is sufficient for most cooperative patients. If the hook is embedded in fingers or toes consider a digital block. Young children may warrant procedural sedation if uncooperative.

Tetanus prophylaxis: Status should be verified and prophylaxis given when indicated.

Four Primary Techniques for Fishhook Removal

The four primary techniques described for the removal of fishhooks are:

  • retrograde
  • string-yank
  • needle cover
  • advance and cut.1-3

The retrograde and string-yank methods generally result in the least amount of tissue trauma.

The needle cover and advance and cut techniques are generally reserved for more difficult fishhook removals.

It may take multiple techniques and attempts before a fishhook can be successfully removed. The physician should take care not to be struck by the hook on removal and eye protection should be worn.

 

Figure 3: Fishhook structure.6

 

Retrograde “Back Out” technique:

Lowest success rate. Works well for barbless/superficial embedded hooks.1

Figure 4: Retrograde technique.1

  • Apply downward pressure to the shank of the hook (helps to rotate the gook and disengage the barb)
  • Back the hook out of the skin along the path of entry
  • If any resistance/catching of the barb is experienced, should stop and consider other removal techniques

 

String-Yank Technique:

Modification of the retrograde technique. Considered to be least traumatic as it creates no new wounds.1 Generally works best on small-medium sized hooks. Cannot be performed on parts of the body that are not fixed (eg. earlobe).

Figure 5: String-Yank Technique

  • Wrap a 3-0 silk culture around the midpoint of the bend in the fishhook with the free ends of the string held tightly (can achieve a better grip wrapping the free ends around a tongue depressor or around the providers fingers)
  • Stabilize the involved skin area against a flat surface as the shank is depressed parallel against the underlying skin
  • Apply a firm quick pull parallel to the shank while continuing to exert pressure on the fishhook
  • Examine hook to ensure that the barb is intact and has been removed

Failure of this technique is most often due to non-forceful pull.

 

Needle Cover Technique:

Works well for removal of large hooks with single barbs that are superficially embedded and can be easily covered by a needle.3

Figure 6: Needle Cover Technique

  • Advance an 18 gauge (or larger) needle along the entrance wound of the fishhook
  • Direction of insertion of needle should be parallel to the shank, with the bevel pointing towards the inside of the curve of the fishhook (allows the needle to engage the barb)
  • Advance the fishhook to disengage the barb, then pull and twist so that the point of the hook enters the lumen of the needle
  • Back the fishhook out of the path of entry, moving the needle along with the fishhook

 

Advance and Cut Technique:

Almost always successful, irregardless of fishhook size. Disadvantage of this technique is additional trauma to surrounding tissue. This technique is most effective when the point of the fishhook is located near the surface of the skin.3

Figure 7: Advance and Cut technique

  • Using a needle driver (or pliers), advance the fishhook, including the entire barb, through the skin
  • Cut the advanced portion (including barb) free with pliers or other cutting tool
  • Remove the remaining portion of the fishhook back out of the original entrance wound (should be no resistance)

 

Post Fishhook Removal Wound Care
– Explore wound for possible foreign bodies (bait)
– Generally wound is left open to heal by secondary intention
– Rinse wound with normal saline irrigation post fishhook removal
– Consider application of antibiotic ointment and simple dressing
– Majority of individuals with superficial wounds do not require prophylactic antibiotics; consider in those who are immunosuppressed or who have poor wound healing (diabetics, peripheral vascular disease).

  • The most common pathogens involved in fishhook wound infections are Staph aureus, and Strep pyogenes originating from the patients’ skin flora. As such oral antibiotic coverage could include five days of: Keflex, Penicillin, Amoxicillin, Clindamycin, Septra.
    – Antibiotics for any deep wound involving tendons, cartilage, or bone
    – Discuss monitoring for signs/symptoms of infection and return for reassessment if any complications
    – Patients who receive antibiotics should be scheduled follow up evaluation in 2-3 days to assess for signs of infection

 

Bottom Line: Fishhook injuries are common emergency department presentations among both recreational and commercial fisherman. The majority of these injuries are superficial, soft tissue injuries that can be managed with one of the four techniques described above.

The initial evaluation of these patients should include a thorough neurovascular exam and assessment to determine any features that would deem the injury complicated (joint/bone involvement, orbit/eyeball involvement, vascular injury) requiring specialist consultation or further investigations (Xray).

The choice of technique utilized will vary depending on type of fishhook, location of injury, depth, and practitioner comfort. Some injuries may require multiple attempts and techniques before the hook will be successfully removed.

Post fishhook removal, the wound should be thoroughly irrigated and left to heal by secondary intention. The majority can be managed with antibiotic creams and at-home monitoring for signs of infection, but those at risk of poor wound healing can be considered for prophylactic antibiotics.

 

References:
1. Gammons, M.; Jackson, E. Fishhook Removal. Am Fam Physician. 2001 Jun 1;63(11):2231-2237. Retrieved from https://www.aafp.org/afp/2001/0601/p2231.html.

  1. Bothner, J. Fishhook removal techniques. Updated Mar 01, 2020. Retrieved from: https://www.uptodate.com/contents/fish-hook-removal-techniques?search=fishhook%20removal%20&source=search_result&selectedTitle=10~150&usage_type=default&display_rank=10#H13

  2. Riveros, T., Kim, J., Dyer, S. Trick of the Trade: Fishhook Removal Techniques. 2018, Jan 8. Retrieved from: https://www.aliem.com/trick-fishhook-removal-techniques.

  3. Cover photo: https://www.outdoorlife.com/photos/gallery/fishing/2012/04/survival-skills-how-remove-fish-hook-and-treat-injury/

  4. Inchinogolo, F. Fish-hook injuries: a risk for fisherman. Head & Face Medicine
    Volume 6, Article number: 28 (2010)

  5. Fish hook structure, retrieved from: https://en.wikipedia.org/wiki/Fish_hook
Continue Reading

Lateral Canthotomy

Lateral  Canthotomy – A Medical Student Clinical Pearl

Scott Clarke

Med III, Class of 2022

Dalhousie Medical School New Brunswick (DMNB)

Reviewed by Dr. Fraser MacKay

Copyedited by Dr. Mandy Peach

 

Case:

You are a clinical clerk working your first shift in a busy emergency department when you hear overhead those heart stopping, adrenaline pumping words: “Trauma team activation, room 24”. You arrive to find an unconscious 45 year old male. Report from the paramedics tells you there was a workplace accident whereby a tree had fallen and struck the patient in the face. The team works swiftly and efficiently to secure an airway and stabilize his vitals. From the team leader, your role is to perform a brief neurological exam.

Despite heavy sedation and swelling in the face, you are able to identify significant proptosis of his left eye. His right pupil is reactive to light but you notice his left responds significantly less and there is a positive relative afferent pupillary defect (RAPD). You relay your findings to the team lead and suggest an urgent CT scan of the head.

 

Before departing for CT your attending asks you – what diagnosis are you concerned for? What clinical findings support this diagnosis?

Orbital Compartment Syndrome1

Vision threatening condition where intraocular pressure (IOP) exceeds 40 mmHg.

Clues on exam:

  • Impaired extraocular movements (from a retrobulbar hematoma)
  • Decreased visual acuity
  • RAPD
  • Blown Pupil

Your attending agrees there is concern for orbital compartment syndrome and ophthalmology should be urgently paged – do you wait for CT to confirm retrobulbar hematoma?

No – You quickly grab a tono-pen and measure the intraocular pressure to be 50mmHg. In order to save this patient’s vision, a lateral canthotomy is immediately performed in an attempt to temporarily release pressure before definitive hematoma evacuation can occur.

Procedural Overview:

Equipment:

  1. Tono-pen
  2. Hemostat
  3. Local anesthesia
  4. Curved iris scissors (or scalpel)

Anatomy review:

The globe of the eye is held firmly in place by the strong tarsal plates and the medial and lateral canthal ligaments (Figure 2). By dividing the lateral canthus (inferior limb or both inferior and superior limbs), the globe has room to expand which can greatly reduce pressure3.

Figure 2: Anatomy of the components holding the globe of the eye4.

Procedure5:

  1. Clean the lateral portion of the eye using chlorhexidine or a similar solution.
  2. Inject 2-3cc of 1% lidocaine with 1:100,000 epinephrine into the site of the lateral canthus primarily for hemostasis
  3. Insert the hemostat into the lateral portion of the eye and crush the lateral canthus. Hold this for 30-45 seconds. This will devascularize the tissue resulting in further reduction in bleeding.
  4. Using the curved iris scissors (or scalpel), cut the lateral canthus to the rim of the globe, ~1-2cm at a slight downward angle.
  5. The inferior limb of the lateral canthal ligament will be able to be palpated and resembles a guitar string. This should be divided as well.
  6. If significant intraocular pressure remains, divide the superior limb of the lateral canthal ligament as well.
  7. Reassess ocular pressure.

 

Once the procedure is completed you wait 5 minutes and reassess the intraocular pressure. You notice that it has gone from 50mmHg to 38mmHg. The patient is sent for CT head which confirms a retrobulbar hematoma.

You follow up with the patient during his hospital stay and discover his vision eventually returns to his normal pre-injury.

 

Keys to remember6:

Indications include trauma patients with:
– Proptosis
– Impaired ocular movements
– Elevated Intraocular pressure, usually >40mmHg
– Decreased visual acuity
– RAPD

Ideally performed within 60-120 min of features of ischemia to the optic nerve1.

Absolute contraindication:
– Globe rupture

Medical treatment can also be initiated with the goal to help decrease intraocular pressure 1:

  • mannitol
  • acetazolamide
  • pilocarpine
  • timolol

See below for video of a lateral canthotomy on an actual patient (viewer discretion advised):

References

  1. Helman, A. Swaminathan, A. Austin, E. Strayer, R. Long, B, McLaren, J. Brindley, P. EM Quick Hits 24 – Lateral Canthotomy, Cannabis Poisoning, Hyperthermia, Malignant Otitis Externa, BBB in Occlusion MI, Prone CPR. Emergency Medicine Cases. December, 2020. https://emergencymedicinecases.com/em-quick-hits-december-2020/. Accessed [May 5, 2021].
  2. Retrobulbar Hematoma from Warfarin Toxicity and the Limitations of Bedside Ocular Sonography – The Western Journal of Emergency Medicine. https://westjem.com/videos/retrobulbar-hematoma-from-warfarin-toxicity-and-the-limitations-of-bedside-ocular-sonography.html. Accessed March 29, 2021.
  3. Amer E, El-Rahman Abbas A. Ocular Compartment Syndrome and Lateral Canthotomy Procedure. J Emerg Med. 2019;56(3):294-297. doi:10.1016/j.jemermed.2018.12.019
  4. Chan D, Sokoya M, Ducic Y. Repair of the Malpositioned Lower Lid. 2017. doi:10.1055/s-0037-1608711
  5. How to do Lateral Canthotomy – Eye Disorders – Merck Manuals Professional Edition. https://www.merckmanuals.com/en-ca/professional/eye-disorders/how-to-do-eye-procedures/how-to-do-lateral-canthotomy. Accessed March 29, 2021.
  6. Lateral Canthotomy – YouTube. https://www.youtube.com/watch?v=Qs5Smx-cxbo. Accessed March 29, 2021.
Continue Reading

Code Discussion in the ED

EM Reflections March 2021 – Code Discussion in the ED

Thanks to Dr. Paul Page for leading this month’s discussion.

All cases are imaginary but bring up important learning points.

Authored & Copyedited by Dr. Mandy Peach

 

Case

An 80 yo female is brought in by EMS in respiratory distress. There is a known history of end stage CHF. Collateral from the husband on scene was that his wife has been having increasing shortness of breath for 1 week, increased ankle swelling and was sleeping sitting up in the recliner in the living room. He called EMS today as she could not catch her breath when walking upstairs in the home.

The patient is on CPAP with EMS and has signs of central cyanosis. You direct the RT to switch her to Bipap as she is put on the monitors and a new set of vitals are obtained. You quickly examine the patient and find bilateral pitting edema to the knees and both peripheral and central cyanosis. There are audible crackles throughout both lung fields. You grab your ultrasound probe and find diffuse B-lines bilaterally in the lung fields and a cardiac view demonstrates a severely decreased ejection fraction. The IVC is dilated and not collapsing with respirations. She looks drowsy and is not responding to questions. She is not tolerating Bipap well. Her new vitals are: BP 98/62 HR 112 RR 24 O2 sat 85% on BiPAP T 37.4.

You suspect cardiogenic shock. This patient needs to be intubated. But you stop momentarily – this is an elderly patient with end stage cardiac disease. The prognosis for this patient is likely poor. Is intubation in the best interest of the patient?

This is a scenario we are often placed in as ED physicians. Just because we have the ability to resuscitate a patient doesn’t necessarily mean they will have a positive functional recovery. Here the patient is drowsy and in respiratory distress – she cannot tell us her wishes for care. In many cases, end of life care has not been discussed1 and in this situation the care decisions lie with the family/loved ones or us as physicians.

Current practice is that each patient is a ‘full code’ unless otherwise indicated2. So regardless of age, comorbidities, quality of life – if a deterioration of vital signs is seen every attempt is made to resuscitate this patient regardless of the likelihood of a functional recovery. Unlike the rest of medicine, this care is a ‘one fits all’ approach where initial efforts are carried out regardless of clinical situation. Whether or not this is the right approach is not the focus of discussion. Instead this highlights the importance of advanced care planning and goals of care discussions taking place when a patient is well and normalizing this process.

Back to our patient – they are circling the drain. You ask the medical student working with you to look up the patient chart and see if any previous code discussion has taken place. After a quick review there is no documentation of a code status. Even if there was – would this change your management?

Code discussions are not set in stone. A patient with capacity can change their mind at any time. Loved ones acting as substitute decision makers/power of attorney are also able to make decisions for the patient in the event a patient cannot make decisions for themselves.
Ideally you want to have a discussion with the family to set realistic expectations and together make an informed decision for the patient.

Luckily the husband and patient’s daughter are already in the department. You decide to have a discussion before proceeding with intubation. What are your goals for this discussion3?

  • Choose a quiet location away from the patient
  • Give your clear medical opinion and recommendations rather than options only, this way the family doesn’t feel the decision is completely up to them.
  • Use straight forward language that is easy to understand
  • “Review the risks of progressing to CPR if the patient declines including:
    o Incomplete recovery
    o Prolonged death
    o Uncomfortable investigations and treatments
    o Ventilator dependence”
  • Avoid a power struggle with the family if they choose to go against your recommendations.

What are some barriers we face in the emergency department when discussing and prognosing end of life care with patients or family members3?

We are poor at predicting prognosis, partly because this isn’t within our scope of care in initial resuscitation of patients, but also because there is always uncertainty in medicine – and this should be communicated to the family. As we see elderly or co-morbid patients in the department without a prior code status there may be a feeling that this should be the responsibility of the primary care provider and not the ED doc. Lastly, this is a difficult discussion to have regardless of timing and communicating prognosis may not always go smoothly. We may find ourselves in the same situation as the case above – with a crashing co-morbid patient with no clear goals of care. Unfortunately this is an especially difficult time to have this conversation, but it is a necessary one.

Since this is such a difficult discussion to have, is there any approach that might be helpful3?

Think SILVER

Seeks Information:

  • Elicits information regarding baseline level of function, behaviors, and symptoms that suggest progressive decline
  • Elicits information regarding current diagnosis, prognosis, and treatment plan
  • Elicits information regarding key players in decision making, including family and health care workers
  • Elicits information regarding previous end of life discussions, including advance directives

Life Values:

  • Elicits information regarding the patient’s personality and approach to life
  • Elicits information regarding how the patient views death and dying

Educates/Extends Care:

  • Pr0vides information regarding the patient’s disease process, current condition, and treatment options
  • Explains how end of life decisions will impact further treatment

Responds:

  • Solicits questions from family and offers continued support and availability for further information.”

You have a discussion with the family keeping in mind the above approach. You clearly lay out the poor prognosis and that you would suggest palliating the patient and avoiding any aggressive resuscitation. The daughter is upset and states “So you’re going to do nothing for my mother?”

This is a common misconception – that ‘do not resuscitate’ is the equivalent of doing ‘nothing’. Choosing not to do compressions or intubate a patient is the decision when an arrest or peri-arrest situation arises. However, patients can still receive medical care with goals in mind depending on the clinical situation. For example, using antibiotics in a patient with metastatic cancer who has pneumonia and who is clinically stable. Or in this situation – providing medications and oxygen to ensure a patient is comfortable and without suffering as they near the end of their life.

One approach could be to positively state all the things you will do for her mother, as oppose to what you will not be doing3.

Wording surrounding code status has also moved towards “allowing natural death” instead of “do not resuscitate” – again moving away from the idea that we are not providing a medical service.

You lay out your plan and positively reinforce the care you can provide for the patient. They agree that aggressive care would not be what the patient wanted and they agree to proceed with palliation. The husband asks you how much time she has left, and if they have time to call in family.

What are signs that help predict timing of death3?

Delirium with hypotension and tachycardia: median survival 10 days
Death rattle: medial survival 1 day
Respirations with mandibular movement: median survival 2.5 hours
Cyanosis to extremities: medial survival 1 hour”

Your patient is cyanotic and essentially crashing. You again express that predicting is difficult, but you anticipate she may die soon and you suggest calling in the family.

You discuss interim management of the patient’s symptoms while you await palliative care. As the patient is quite short of breath one of your recommendations is opioids to help. The husband says he does not want opioids given as they will ‘kill her sooner’. How do you respond?

Opiods can help with the sensation of shortness of breath. The doses used for dyspnea are smaller than the doses used for pain.

“Studies have shown that O2 and CO2 levels stay the same despite the decreased respiratory rate associated with opioids. Opioids in the palliative patient are appropriate and ethically permissible as long as the intent is symptoms relief.”3

See the infographic below for symptom management in palliative care patients3. Being familiar with palliative care is pertinent – these patients are ours until consultants take over care, and in current climate often we end up palliating patients.

The husband agrees with your plan. They stay with the wife in the ED and within a short time a bed is available in palliative care. The patient dies comfortably that night. What about if the family wasn’t there? And we had to choose to resuscitate the patient or not?

There is no right answer. Choosing to intubate the patient and have the discussion with family after the fact is one option. Choosing not to intubate the patient and provide conservative management until a discussion can be had is another option. Sometimes these will be patients with end stage disease but the presentation may be a reversible one. Sometimes these will be healthy patients with irreversible presentations.

Regardless, clearly documenting on the chart your rationale and approach can be helpful in laying out your thought process.

These are difficult situations, and at the end of the day you have to be ethically comfortable with your decision. Having open, honest conversations with family/loved ones as outlined above can certainly help us feel at ease with our decisions and help families and patients come to terms with worsening conditions.

 

References and further reading:

Dong, K. CanadiEM Frontline Primer – Advance Care Planning and Goals of Care Review. CanadiEM. 2020. https://canadiem.org/canadiem-frontline-primer-advance-care-planning-and-goals-of-care-review/ (Assessed April 25, 2021)

Kwok, E. From Full Code to No Code. CanadiEM. 2012. https://canadiem.org/from-full-code-to-no-code/. (Assessed April 25, 2021).

Greewal K, Helmin A.Episode 70 End of Life Care in Emergency Medicine. Emergency Medicine Cases. Sept 2015. https://emergencymedicinecases.com/end-of-life-care-in-emergency-medicine/. (Assessed April 25, 2021).

Continue Reading

Trauma Reflections April 2021

Big thank you to our guest Dr Zlatko Pozeg and Sue Benjamin for her efforts in putting these reviews together.

Major points of interest:

A) Approach to airway management in peri-arrest patients

Shocked patients should have no more than 1/2 dose of induction agents during RSI.

Ketamine and etomidate are medications least likely to negatively affect hemodynamic status.

B) “The IV line is blown” – Now what?

Establishing vascular status quickly is a critically important step in the resuscitation of trauma patients – have a plan B (and C).

If a large bore peripheral IV catheter placement cannot be achieved, intraosseous access is likely the quickest alternative.

Also consider using ultrasound to identify other peripheral venous sites, direct cannulation of external jugular vein or saphenous vein at ankle or establish central venous access.

C) Reversible causes of traumatic cardiac arrest – Fix what you can fix, quickly

D) When was the last time I did an intubation in a trauma patient?

Probably a long time ago.

This underscores the importance of simulation for these high acuity low frequency events.

 

E) That patient is here for CT, just send them..

In this series of trauma patients transferred to the SJRH that were NOT evaluated by ED MD or RN on arrival, majority were admitted and ½ went to ICE. These are high risk patients that should be evaluated for stability prior to sending for imaging.

F) There are very few indications for ECMO in trauma in the ED

Consider in drowning and severe hypothermia.

 

G)ED Thoracotomy

See following podcast from EMCrit: https://emcrit.org/emcrit/procedure-of-thoracotomy/

Continue Reading