“At work, at home”

As I began a new role with WorkSafeNB, alongside ongoing work in Emergency Care, I thought that perhaps it was timely to reflect on some of the best ways that we can all improve our health and the health of our patients, whether at work, or at home. Too often, we equate our health with how we feel, what pills we take, or how often we see a nurse or doctor. We all have a much greater influence and control over the quiet processes underpinning our physical and mental health than we are aware of.

How can we, as a society, achieve mindfulness that while some parts of our bodies (neurons) are as old as we are, others (skin, lungs, liver and even our heart) are replaced over time, cell by cell? That the food we eat is not just fuel for our bodies, but also supplies the building blocks – the replacement parts for our organs? To consider that when we drink that bottle of sugary pop to wash down the nachos or pizza, we should not be surprised if the body we build, over time, reflects those choices. If we sit all day, every day, and then suddenly need to run to catch a bus, or climb a flight of stairs, is it surprising that our leg muscles cry out in protest, and our heart pounds to alert us to its stress?

I believe that 2017 is as good a year as any for us as a society, and as individuals, to make some changes, so that in 2018, 2028 and beyond, we have a little bit more health, and a little less “health care” in our lives. How does that relate to work? Let’s look at a few scenarios: working, being unemployed, disability, going back to work and time spent at home.

Working: In general, going to work is good for us. Working is the most common way to make a living and attain financial independence. We know that long spells without work are harmful to physical and mental health. Earning enough money to eat well, to afford leisure, to reduce stress around meeting payments is likely to benefit our health. Work also meets many psychosocial needs including identity and providing a purpose in life.

However, many jobs pose both physical and psychological hazards that can risk health. These might include the dangers associated with construction, operating machinery or performing repetitive tasks, or may simply be the amount of sitting down at work. People who sit for prolonged periods of time have a higher risk of dying from all causes — even those who exercise regularly.

Unemployment: There is a strong association between not working and being in poor health. Unemployed people die earlier, have more physical and mental health issues, and use medical resources more frequently.

Disability: Injured and ill workers need the time and medical interventions provided to them by workers’ compensation, or other insurance, to recover from their injury or illness. However, they too will suffer the ill effects of being off work for extended periods of time.

Going back to work: For the most part, the negative effects of not working can be reversed by going back to work. Disabled and sick individuals should be encouraged and supported to return to some form of work as soon as possible, when their health condition permits. Again, this helps to promote recovery and rehabilitation; leads to better physical and mental health outcomes; improves their economic position and improves quality of life overall.

At home: Many of the factors that influence health in the workplace also apply at home and in all other settings. Better food, less sitting, more exercise, more relaxation, and active community engagement all improve our health and wellbeing.

We all know these things to be true. Physicians and politicians talk about educating the public. And yet rates of obesity, diabetes, high blood pressure, mental health issues and many other chronic illnesses continue to increase. So, while we must continue to promote healthy choices, it is clear that education and information are not very effective without systemic change.

Over the past century, major health improvements and increased life expectancy came about because of clean water and rapid declines in infectious disease, including immunization policy, as well as broad economic growth, rising living standards, and improved nutritional status. Much of this change has been at a societal level, rather than individual – in other words, ordinary people didn’t really need to make any special effort to benefit from these things. More recent smaller gains have resulted from advances in treatment of cardiovascular disease and control of its risk factors, such as smoking.

Frieden’s “Health Impact Pyramid” clearly shows that if we want to improve health, the most effective and straightforward means is through improving socio-economic factors. However, the next level of action is challenging. “Changing the context to make individuals’ default decisions healthy” may sound to some a little too much like the “nanny state” or “big brother.” But does true independent individual choice exist? We tend to eat similar foods to those around us – think of the difference you notice when you travel to another culture. The milk we drink, the bread we eat – as individuals, we do not control the ingredients. We have similar habits to those around us – think social media, cars we drive, holidays we celebrate. These choices all contain elements that are beyond our control, yet they influence our health every day. Individual choices will move in a healthier direction when government, industry and community leadership come together to establish a healthier environment.

I will sign off with my suggested prescriptions for 2017. These are all achievable, without a major amount of effort, at minimal cost, but with major potential benefit:

Prescription for Workers:

Engage in your job. Remain as physically active as possible at work – stand rather than sit, for periods of time; use the stairs rather than the elevator. Eat well – pack a salad for lunch; don’t bring unhealthy sugary snacks to work. Take regular breaks, each day, each week, and use your vacation to renew body and mind. Safety – always take full safety precautions; never operate dangerous machinery when fatigued, distracted or intoxicated; report any dangers you discover.

Prescription for Employers:

Engage your workers. Provide opportunity for physical activity. Facilitate options for healthy eating. Schedule workers appropriately, allowing adequate rest periods. Provide support for stressed, sick, or injured workers. And of course, always provide a safe work environment, cultivating a safety culture where workers are comfortable discussing dangers and precautions.

Prescription for Decision Makers (Government, Healthcare Providers, Industry, etc.):

Continue to work towards full employment. Promote exercise, and make it easier for all to exercise safely – with walking paths, cycle lanes and paths, safe crosswalks. Encourage a better general diet – create incentives for healthy choices. Encourage and incentivize the healthcare sector to make cost effective choices for treatment and investigation. Prioritize health and prevention of disease when making policy decisions – factor in long term investment and cost savings over short term gains. Help create a healthy, safe culture for all.

Prescription for All of us at Home:

Let’s think about what food we buy – we are likely to eat it! We are what we eat (and drink) – it is not just fuel. Don’t drink sugary beverages – they will damage our livers and increase our chance of diabetes and obesity. Don’t smoke – it kills – and help is available to stop. Stand up, walk around, then walk some more. There are 24 hours in a day – why not spend at least half an hour exercising? Spend some time with friends and family, and spend some time alone, thinking.

Here’s to a healthier 2017, at work, and at home.

Dr. Paul Atkinson MB MA FRCPC
Professor and Research Program Director
Emergency Medicine
Dalhousie University
Saint John Regional Hospital
Saint John, NB E2L 4L2Chair, Department of Emergency Medicine Research Committee,
Dalhousie University in New Brunswick

Chief Medical Officer, WorkSafeNB

Senior Editor, Canadian Journal of Emergency Medicine

paul.atkinson@dal.ca

@Eccucourse

Dr Paul Atkinson

 

For original article in OPUS MD and French version see below.

Download (PDF, 205KB)

Continue Reading

SHoC blog from @CanadiEM

Social media site @CanadiEM recently featured the @CJEMonline @IFEM2 #SHoC Consensus Protocol, featuring authors from @SJRHEM among others.

So why do we need another ultrasound protocol in emergency medicine? RUSHing from the original FAST scan, playing the ACES, FOCUSing on the CAUSE and meeting our FATE, it may seem SHoCking that many of these scanning protocols are not based on disease incidence or data on their impact, but rather on expert opinion. The Sonography in Hypotension (SHoC) protocols were developed by an international group of critical care and emergency physicians, using a Delphi consensus process, based upon the actual incidence of sonographic pathology detected in previously published international prospective studies [Milne; Gaspari]. The protocols are formulated to help the clinician utilize ultrasound to confirm or exclude common causes, and guides them to consider core, supplementary and additional views, depending upon the likely cause specific to the case.

Why would I take the time to scan the aorta of a 22 year old female with hypotension, when looking for pelvic free fluid might be more appropriate? Why would I not look for lung sliding, or B lines in a breathless shocked patient? Consideration of the shock category by addressing the “4 Fs” (fluid, form, function, and filling) will provide a sense of the best initial therapy and should help guide other investigations. Differentiating cardiogenic shock (a poorly contracting, enlarged heart, widespread lung B lines, and an engorged IVC) in an elderly hypotensive breathless patient, from sepsis (a vigorously contracting, normally sized or small heart, focal or no B lines, and an empty IVC) will change the initial resuscitation plan dramatically. Differentiating cardiac tamponade from tension pneumothorax in apparent obstructive shock or cardiac arrest will lead to dramatically differing interventions.

SHoC guides the clinician towards the more likely positive findings found in hypotensive patients and during cardiac arrest, while providing flexibility to tailor other windows to the questions the clinician needs to answer. One side does not fit all. That is hardly SHoCing news. Prospective validation of ultrasound protocols is necessary, and I look forward to future analysis of the effectiveness of these protocols.

References

Scalea TM, Rodriguez A, Chiu WC, et al. Focused Assessment with Sonography for Trauma (FAST): results from an inter- national consensus conference. J Trauma 1999;46:466-72.

Labovitz AJ, Noble VE, Bierig M, Goldstein SA, Jones R, Kort S, Porter TR, Spencer KT, Tayal VS, Wei K. Focused cardiac ultrasound in the emergent setting: a consensus statement of the American Society of Echocardiography and American College of Emergency Physicians. Journal of the American Society of Echocardiography. 2010 Dec 31;23(12):1225-30.

Hernandez C, Shuler K, Hannan H, Sonyika C, Likourezos A, Marshall J. C.A.U.S.E.: cardiac arrest ultra-sound exam – a better approach to managing patients in primary non-arrhythmogenic cardiac arrest. Resuscitation 2008;76:198–206

Atkinson PR, McAuley DJ, Kendall RJ, et al. Abdominal and Cardiac Evaluation with Sonography in Shock (ACES): an approach by emergency physicians for the use of ultrasound in patients with undifferentiated hypotension. Emerg Med J 2009;26:87–91

Perera P, Mailhot T, Riley D, Mandavia D. The RUSH exam: Rapid Ultrasound in Shock in the evaluation of the critically lll. Emerg Med Clin North Am 2010;28:29 – 56

Jensen MB, Sloth E, Larsen KM, Schmidt MB: Transthoracic echocardiography for cardiopulmonary monitoring in intensive care. Eur J Anaesthesiol. 2004, 21: 700-707.

Gaspari R, Weekes A, Adhikari S, Noble VE, Nomura JT, Theodoro D, Woo M, Atkinson P, Blehar D, Brown SM, Caffery T. Emergency department point-of-care ultrasound in out-of-hospital and in-ED cardiac arrest. Resuscitation. 2016 Dec 31;109:33-9.

Milne J, Atkinson P, Lewis D, et al. (April 08, 2016) Sonography in Hypotension and Cardiac Arrest (SHoC): Rates of Abnormal Findings in Undifferentiated Hypotension and During Cardiac Arrest as a Basis for Consensus on a Hierarchical Point of Care Ultrasound Protocol. Cureus 8(4): e564. doi:10.7759/cureus.564

Sonography in Hypotension and Cardiac Arrest: The SHoC Consensus Statement

Continue Reading

RCP – The Pregnant ED Patient – A Compendium of Pearls

The Pregnant ED Patient – A Compendium of Pearls

Resident Clinical Pearl (RCP) – April 2017

Luke Taylor, R1 FMEM, Dalhousie University, Saint John, New Brunswick

Reviewed/Edited by Dr. David Lewis

 

 


Many adaptations take place in the gravid female, the end goal of each being to provide optimal growth for the fetus, as well as to protect the mother from the potential risks of labour and delivery.

 

It is very important to understand these changes when assessing an unwell pregnant patient. For example, a hemorrhaging patient may not show the typical signs and symptoms of tachycardia and hypotension until much later.

 

 


Vitals:

 

BP: Blood pressure falls earlier in pregnancy with nadir in second trimester (mean ~105/60 mmHg). Third trimester BP increases and may reach pre pregnancy levels at term.

Brought on by a reduction in SVR and multiple hormonal influences not fully understood.

 

HR: CO=HRxSV. The increase in CO is attributed mainly to the increase in circulating volume (30-50% above baseline). HR increases by 15-20 beats/min over non pregnant females.

*Supine position in the gravid female can lower CO by 20-30%

 

RR: State of relative hyperventilation. NO change in RR, however there is an increase in tidal volume resulting in a 50% increase in minute ventilation. Increased O2 consumption and demand with hypersensitivity to changes in CO2.

*60-70% of women experience a sensation of dyspnea during pregnancy


 


Imaging and ECG:

 

Must ensure imaging is necessary for management and explain risks well.

** 1 rad increases the risk of childhood malignancy by 1.5-2x above baseline.

 

CXR: Minimal changes to CXR in normal pregnancy but may have; prominence of the pulmonary vasculature and elevation of the diaphragm.

 

PoCUS: FAST doesn’t perform well in pregnant patient. Small amount of physiologic free fluid in the pelvis (posterior, lower portion of uterus), all else should be considered pathologic. Physiologic hydronephrosis and hydroureter (mostly R-sided).

 

CT-A: When required to rule out PE, capable of being completed at very low rad (below teratogen cut off, CT of 1-3rad is under the teratogenic cutoff of 5-10rad = 10,000 cxr or 10x CT chest

 

ECG: Various changes occur, may include ST and T wave changes, and presence of Q waves. The heart is rotated toward the left, resulting in a 15 to 20º left axis deviation. Marked variation in chamber volumes, especially left atrial enlargement. This can lead to stretching of the cardiac conduction pathways and predisposes to alterations in cardiac rhythm.

 


Routine Laboratory Tests:

 

CBC: Physiologic Anemia – Increased retention of Na and H2O (6-8L) leading to volume expansion combined with a slightly smaller increase in red cell mass.

Leukocytosis – Due to physiologic stress from the pregnancy itself, creates a new reference range from 9000, to as high as 25000 in healthy pregnant females (often predominately neutrophils)

 

PTT: Various processes result in 20% reduction of PTT and a hypercoagulable state (also helps to protect from hemorrhage during labour).

 

Urinalysis: Very common to have 1-3+ leukocytes, presence of blood, as well as ketones on point of care testing. Not considered pathologic unless Nitrite positive.

 

Creatinine: Pre-eclamptic patients may have a creatinine in the normal range, but have a drastic reduction in GFR (40%).

 

B-HCG: Every female of childbearing years should be considered to: Be pregnant, RH-, and have an ectopic. Studies show that 7-15% of women who (in the ED) state it is “Impossible” they are pregnant, end up being. Draw a beta HCG on every women of childbearing years regardless of LMP.

 


ACLS

 

Remember, most features are the same as when resuscitating a non-pregnant patient.

Some things to remember:

 

Higher risk of aspiration – Progesterone relaxes gastroesophageal sphincters and prolongs transit times throughout the intestinal tract. = Careful bag mask ventilation, do not overdo it.

Left uterine displacement (LUD)– While patient supine to provide best chest compressions possible

Medications and Dosages– Remain the same in pregnancy, vasopressors like epinephrine should still be used despite effect on uterus perfusion

Defibrillation OK–  Fetus is not effected by defibrillation, low risk of arc if fetal monitors in place, do not delay.

Four minute rule– For patients whose uterus is at or above the umbilicus, prepare for cesarean delivery if no ROSC by 4mins. ** In a case series of 38 perimortem cesarean delivery (PMCDs), 12 of 20 women for whom maternal outcome was recorded had ROSC immediately after delivery.

Etiology:  Must continue to think broadly, however common reasons for maternal cardiac arrest are: bleeding, heart failure, amniotic fluid embolism (AFE), and sepsis. Common maternal conditions that can lead to cardiac arrest are: preeclampsia/eclampsia, cerebrovascular events, complications from anesthesia, and thrombosis/thromboembolism.

 


References

http://circ.ahajournals.org/content/132/18/1747/tab-supplemental

https://www.uptodate.com/contents/respiratory-tract-changes-during-pregnancy?source=search_result&search=pregnancy%20respiratory&selectedTitle=1~150

https://www.merckmanuals.com/en-ca/professional/gynecology-and-obstetrics/approach-to-the-pregnant-woman-and-prenatal-care/physiology-of-pregnancy

https://radiopaedia.org/cases/chest-x-ray-in-normal-pregnancy

Continue Reading

CAEP Definition of an Emergency Physician and the Importance of Emergency Medicine Certification

CAEP Definition of an Emergency Physician

An emergency physician is a physician who is engaged in the practice of emergency medicine and demonstrates the specific set of required competencies that define this field of medical practice. The accepted route to demonstration of competence in medicine in Canada is through certification by a recognized certifying body.*

CAEP recognizes that historically many of its members are physicians who have practiced emergency medicine without formal training and certification. Many have been, and continue to be key contributors to developing emergency medicine and staffing emergency departments in Canada. CAEP acknowledges the contributions of these valued physicians and recognizes them as emergency physicians. It is CAEP’s vision going forward that physicians entering emergency practise will demonstrate their competencies by obtaining certification.

* Recognized certifying bodies in Canada are:
The Royal College of Physicians & Surgeons of Canada
The College of Family Physicians of Canada
(Emergency Physicians with equivalent non-Canadian training and certification are also recognized in Canada eg The American Board of Emergency Medicine)

CAEP Statement on the Importance of Emergency Medicine Certification in Canada

It is CAEP’s vision, that by 2020 all emergency physicians in Canada will be certified in emergency medicine by a recognized certifying body.*

Toward that vision, provincial governments and Faculties of Medicine must urgently allocate resources to increase the numbers of emergency medicine postgraduate positions in recognized training programs so the Colleges are able to address the gap in human resources and training. Furthermore, physicians who have historically practiced emergency medicine without certification must be supported in their efforts to become certified. CAEP is committed to facilitate this process by cataloguing and nationally coordinating practice- and practitioner-friendly educational continuing professional development programs designed to assist non-certified physicians to be successful in their efforts.

* Recognized certifying bodies in Canada are:
The Royal College of Physicians & Surgeons of Canada
The College of Family Physicians of Canada
(Emergency physicians with equivalent non-Canadian training and certification are also recognized in Canada eg The American Board of Emergency Medicine)

We have also published on this topic, highlighting the need for more resident positions in New Brunswick and PEI. Read our paper here.

 

Read more from CAEP here.

 

Continue Reading

EM Reflections – February 2017

Thanks to Dr. Joanna Middleton for her summary

Edited by Dr David Lewis

Top tips from this month’s rounds:


Imaging for Bone Mets

Plain radiographs are not very sensitive for detecting bone metastases. Metastases to bone become apparent on radiographs only after the loss of more than 50% of the bone mineral content at the site of disease. The diagnostic utility of plain films of the skull, spine, and pelvis is limited by superposition effects. In these areas, the sensitivity of plain films for bone metastases is only in the range of 44–50%.

Reproduced from:Imaging of bone metastasis: An update – World Journal of Radiology

Further resources – Diagnostic Imaging of Bone Metasteses

 


Imaging for Thoracolumbar Spine Trauma

Plain radiography is not sensitive for thoracolumbar spine trauma – Trauma of the spine and spinal cord: imaging strategies – European Spine Journal (Full Text)

We have a guideline for imaging Thoracolumbar trauma. Click image below for larger version.

Any of: High energy mechanism, Inability to ambulate, extremity paresthesia, bladder/bowel deficit, saddle anesthesia – mandates CT

 


Cervical Spine Precautions

Not all trauma patients transferred by EMS require cervical spine precautions. New Brunswick EMS have guidelines (click image for full size):

 


 

Rapid Sequence Intubation – Paralysis with Rocuronium

The recommended dose of Rocuronium for RSI is 1.2 – 1.5mg/kg (not 0.6mg/kg as stated in many drug references)

Rocuronium can be rapidly reversed by Suggamadex (and it’s reversal is quicker than waiting for Sux to wear off)

Excellent RSI reference article from LIFL – Rapid Sequence Intubation (RSI)

 

Rocuronium vs. Succinylcholine from reuben strayer on Vimeo.


Graded Assertiveness vs Advocacy

 

A reminder that we all have a responsibility to ‘speak-up’ and challenge when we see an issue. There are a number of described methodologies (see below), however the key factor is acting on your concern, don’t be that person who watches an unfolding series of errors and think ‘I wish I had said something earlier’….

As the person being challenged – be grateful that someone has had the courage to ‘speak-up’ and potentially save your ass!

 

Graded Assertiveness

More from LIFL here – Speaking Up


 

AMI – STEMI – Early Diagnosis and Reperfusion significantly impacts Mortality

We shouldn’t need reminding that early diagnosis of STEMI via history and ECG significantly impacts mortality. Dynamic ECG changes must be recognised and reperfusion strategies initiated as soon as possible.

Delayed reperfusion increases mortality.

 

Continue Reading

RCP – Save your Thumbs: Extra-oral reduction of anterior mandibular dislocations

Save your Thumbs: Extra-oral reduction of anterior mandibular dislocations

Resident Clinical Pearl (RCP) – February 2017

Kavish Chandra, PGY2 iFMEM, Dalhousie University, Saint John, New Brunswick

@kavishpchandra

 

Reviewed by Dr. Paul Frankish and Dr. David Lewis

 

Mandibular dislocations can be atraumatic or traumatic. The atraumatic variety can occur after extreme mouth opening from yawning, laughing or vomiting and can cause severe pain, difficulty swallowing and malocclusion of the jaw (1).Anterior mandibular dislocations are the most common form of atraumatic dislocations and can be bilateral or unilateral. In this injury, the temporal mandibular joint (TMJ) dislocates in front of the articular eminence and muscular spasm traps the mandible in that position (2).(Fig. 1A and B)

 

Figure 1A: TMJ and coronoid (black arrow) in normal resting position. Figure 1B: TMJ dislocates anteriorly and the coronoid (black arrow) is palpable just below the zygoma. Adapted from Chen et al. 2007.

 

Various reduction techniques are described and predominantly involve intra-oral manipulation, often with the use of procedural sedation (Fig. 2) (1). With the intra-oral technique, there is a risk of the mandible snapping shut on the operator’s fingers as well as the risk of a failed reduction and risks of procedural sedation.

 

Figure 2: Intra-oral TMJ reduction with thumb on molars and pressure is applied downwards and backwards. Adapted from Tintinalli’s Emergency Medicine.

 

 

The Question: is there an effective extra-oral reduction technique for anterior mandibular dislocations?

 

Chen et al. (2007) published a case series describing a rapid and effective extra-oral reduction method for anterior mandibular dislocations(2). Furthermore, their technique does not require any procedural sedation and analgesia, thereby minimizing risks to the patient and freeing up valuable ED resources.

 

Figure 3: With your fingers, pull the mandible forward (large arrow) while using the ipsilateral zygoma as fulcrum (little arrow). This further dislocates the TMJ anteriorly and facilitates contralateral TMJ reduction. See Figure 4 to perform the concurrent contralateral TMJ reduction. Adapted from Chen et al. 2007.

 

Figure 4: On the opposite side, place your thumb just above the palpable coronoid process and apply persistent pressure to push the coronoid and TMJ back (big and little arrow). Figure 3 and 4 are reversed to facilitate TMJ reduction on contralateral side. Adapted from Chen et al. 2007.

 


Why not watch this technique in action:

 

 

 


References

  1. Tintinalli, JE. (2016). Eye, ear, nose, throat and oral disorders. (8th ed.) Tintinalli’s Emergency Medicine: A Comprehensive Study Guide (pages 1590-1591). New York: McGraw-Hill.
  2. Chen Y, Chen C, Lin C, Chen Y. A safe and effective way for reduction of temporomandibular joint dislocation. Ann Plast Surg. 2007;58(1):105-108. [PubMed]
  3. https://www.aliem.com/2016/trick-of-the-trade-extra-oral-technique-for-reduction-of-anterior-mandible-dislocation/

 


 

Continue Reading

Hydration Guidelines for Pediatric Patients with Vomiting and/or Diarrhea

Hydration Guidelines for Pediatric Patients with Vomiting and/or Diarrhea

PURPOSE:

To assess and address dehydration and initiate treatment to prevent further clinical decline in children >6m with vomiting +/- diarrhea triaged CTAS 3,4,5


The hydration guidelines will be implemented in Triage level 3, 4 and 5 children who are greater than 6 months old presenting with a history of vomiting and/ or diarrhea with no abdominal pain other than expected cramping.

See the Guideline Here

 

 

Continue Reading

IFEM Consensus Statement – SHoC – PoCUS use in Undifferentiated Hypotension and Cardiac Arrest

International Federation for Emergency Medicine Consensus Statement: Sonography in hypotension and cardiac arrest (SHoC): An international consensus on the use of point of care ultrasound for undifferentiated hypotension and during cardiac arrest.

Paul Atkinson, MB, MA*†; Justin Bowra, MB‡§; James Milne, MD¶; David Lewis, MB*†; Mike Lambert, MD**; Bob Jarman, MB, MSc†††‡‡; Vicki E. Noble, MD§§¶¶; Hein Lamprecht, MB***; Tim Harris, BM†††‡‡‡; Jim Connolly, MB†† on behalf of the International Federation of Emergency Medicine Sonography in Hypotension and Cardiac Arrest working group: Romolo Gaspari, MD, PhD; Ross Kessler, MD; Christopher Raio, MD; Paul Sierzenski, MD; Beatrice Hoffmann, MD; Chau Pham, MD; Michael Woo, MD; Paul Olszynski, MD; Ryan Henneberry, MD; Oron Frenkel, MD; Jordan Chenkin, MD; Greg Hall, MD; Louise Rang, MD; Maxime Valois, MD; Chuck Wurster, MD; Mark Tutschka, MD; Rob Arntfield, MD; Jason Fischer, MD; Mark Tessaro, MD; J. Scott Bomann, DO; Adrian Goudie, MB; Gaby Blecher, MB; Andrée Salter, MB; Michael Rose, MB; Adam Bystrzycki, MB; Shailesh Dass, MB; Owen Doran, MB; Ruth Large, MB; Hugo Poncia, MB; Alistair Murray, MB; Jan Sadewasser, MD

Canadian Journal of Emergency Medicine (CJEM) 

The International Federation for Emergency Medicine (IFEM) Ultrasound Special Interest Group (USIG) was tasked with development of a hierarchical consensus approach to the use of point of care ultrasound (PoCUS) in patients with hypotension and cardiac arrest.

The IFEM USIG invited 24 recognized international leaders in PoCUS from emergency medicine and critical care to form an expert panel to develop the sonography in hypotension and cardiac arrest (SHoC) protocol. The panel was provided with reported disease incidence, along with a list of recommended PoCUS views from previously published protocols and guidelines. Using a modified Delphi methodology the panel was tasked with integrating the disease incidence, their clinical experience and their knowledge of the medical literature to evaluate what role each view should play in the proposed SHoC protocol.

Consensus on the SHoC protocols for hypotension and cardiac arrest was reached after three rounds of the modified Delphi process. The final SHoC protocol and operator checklist received over 80% consensus approval. The IFEM-approved final protocol, recommend CoreSupplementary, and Additional PoCUS views. SHoC-hypotension core views consist of cardiac, lung, and inferior vena vaca (IVC) views, with supplementary cardiac views, and additional views when clinically indicated. Subxiphoid or parasternal cardiac views, minimizing pauses in chest compressions, are recommended as core views for SHoC-cardiac arrest; supplementary views are lung and IVC, with additional views when clinically indicated. Both protocols recommend use of the “4 F” approach: fluidformfunctionfilling. An international consensus on sonography in hypotension and cardiac arrest is presented. Future prospective validation is required.

Download (PDF, 1.2MB)

Continue Reading

Resident Clinical Pearl – No Bullus Paediatric DKA

No Bullus Paediatric DKA

Resident Clinical Pearl – December 2016

Luke Taylor, PGY1 iFMEM, Dalhousie University, Saint John, New Brunswick

Reviewed by Dr. David Lewis

 

An altered 2yr old female child presents to your Emergency Department with a BP of 80/50 and a ++high point-of-care blood glucose…….anxiety provoking for all concerned right?

With a presentation like this, the best thing to do according to the House of God…is to “check your own pulse.”  Hopefully after reading this RCP you won’t need to and please don’t waste time recognising that this is severe DKA and this child needs appropriate emergency management.

Key Point – DO NOT BOLUS Fluid and DO NOT BOLUS Insulin

Paediatric DKA (P-DKA) was deemed by a TREKK (TRanslating Emergency Knowledge for Kids) Needs Assessment to be to be an area in which general EDs wished to improve management. A lack of awareness that optimum P-DKA management is different from that of adult DKA was a major driver. In particular, recognition that P-DKA can be complicated by cerebral edema in up to 1.5% of cases.

Management

Is the child in Decompensated Shock? Systolic BP less than (70+(2*age in yrs) for a child >1yr.

If Decompensated? = Bolus 5-10cc/kg over 1-2hrs and reassess after each bolus

 

If not Decompensated? = Correct slowly

Max fluid = 2x maintenance of Normal Saline

Time: Calculate to correct fluid deficit over 48hrs, most are 4-8% dehydrated in moderate DKA

**DKA develops over days (most of the time), therefore slow correction**

Fluid alone, over first 1-2hrs, then Fluid + insulin infusion at 0.05-0.1U/kg/hr

 

Cerebral Edema (CE)

Risk factors:

  • <5yrs old
  • new onset DM
  • ++acidosis
  • longer duration of symptoms
  • severe dehydration

Symptoms of CE:

**Generally 3-12hrs after initiation of therapy

  • headache
  • vomiting
  • confusion
  • GCS<15
  • irritability

Treatment of CE:

  • ABCs
  • restrict IV fluid to maintenance
  • elevate head of bed
  • Mannitol (0.5-1gm/kg IV over 20min) and/or 3% NaCl (5-10ml/kg IV over 30min)

Bottom line

Always:

Use paediatric specific protocol

Like this: http://sjrhem.ca/guideline/dka-pediatrics/

or http://www.bcchildrens.ca/endocrinology-diabetes-site/documents/dkaprt.pdf

And: contact local paediatric diabetes specialist

DO NOT: BOLUS


References

EM Cases Paediatric DKA: https://emergencymedicinecases.com/pediatric-dka/ (Great podcast!)

Lifeinthefastlane DKA: http://lifeinthefastlane.com/ebm-diabetic-ketoacidosis/

Diabetes Ther. 2010 Dec; 1(2): 103–120. The management of diabetic ketoacidosis in children – Arlan L. Rosenbloom

TREKK: http://trekk.ca/

Download (PDF, 280KB)

 

Continue Reading

In case you missed it, 2016…

Don’t touch – from colon to screen.

Am J Infect Control. 2016 Mar 1;44(3):358-60.

Gerba et al. compared the occurrence of opportunistic bacterial pathogens on the surfaces of computer touch screens used in hospitals and grocery stores. Clostridium difficile and vancomycin-resistant Enterococcus were isolated on touch screens in hospitals and in MRSA in grocery stores. Enteric bacteria were more common on grocery store touch screens than on hospital computer touch screens. So don’t snack while you shop over the holidays. The keywords say everything…

Clostridium difficile; Coliforms; Computer touch screen; Methicillin-resistant Staphylococcus aureus; Vancomycin-resistant enterococcus

 

It hurts, it’s tender, but it’s not appy!

J Pediatr Gastroenterol Nutr. 2016 Mar;62(3):399-402.

Siawash at al. remind us about anterior cutaneous nerve entrapment syndrome (ACNES), a frequently overlooked condition causing abdominal pain. They carried out a cross-sectional cohort in a population 10 to 18 years of age consulting a pediatric outpatient department with new-onset AP during a 2 years’ time period. History, physical examination, diagnosis, and success of treatment were obtained in patients who were diagnosed as having ACNES. Twelve of 95 adolescents were found to be experiencing ACNES. Carnett sign was positive at the lateral border of the rectus abdominus muscle in all 12. Altered skin sensation was present in 11 of 12 patients with ACNES. Six weeks after treatment (1-3 injections, n = 5; neurectomy, n = 7), pain was absent in 11 patients.

BUT WHAT IS CARNETT’S SIGN? Have them tense the abdominal wall (by pulling their legs or head off the bed) and if the pain gets worse or stays the same- it is not intra abdominal.

 

Is there a good REASON to stop CPR?

Gaspari R, Weekes A, Adhikari S, Noble VE, Nomura JT, Theodoro D, Woo M, Atkinson P, Blehar D, Brown SM, Caffery T, et al. Resuscitation. 2016;109:33-9.

Some clinicians use a lack of cardiac activity on ultrasound as a reason to terminate resuscitation efforts. We at the Saint John Regional Hospital Emergency Department (ED) participated in this prospective observational study at 20 EDs across North America. We assessed the association between cardiac activity on point of care ultrasound (PoCUS) during advanced cardiac life support (ACLS) and survival to hospital discharge in patients with pulseless electrical activity (PEA) or asystole. Of 793 patients with out-of-hospital cardiac arrest enrolled, 26% had ROSC, 14% survived to hospital admission, and 1.6% survived to discharge. Among 530 patients without cardiac activity on PoCUS, only 0.6% survived to discharge (compared with 3.8% of those with cardiac activity).

There is always an argument that the association between dismal survival and lack of cardiac activity is just a self-fulfilling prophecy, if absence of cardiac activity led to early termination of salvageable resuscitations. In this study, resuscitation had to continue until at least 2 scans were completed. So, unless there are very special circumstances, such as significant hypothermia, or post defibrillation, it seems safe to terminate resuscitation for most patients with asystole on ECG and without cardiac activity on ultrasound.

 

 

SIRS, I’m not sure what you mean? The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3)

JAMA. 2016;315(8):801-810.

Singer et al. lay out the new definitions for sepsis and septic shock. SIRS is out. Sepsis should be defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. Quantify as a SOFA score of 2 points or more, which is associated with an in-hospital mortality greater than 10%. Patients with septic shock can be clinically identified by a vasopressor requirement to maintain a mean arterial pressure of 65 mm Hg or greater and serum lactate level greater than 2 mmol/L  in the absence of hypovolemia. This combination is associated with hospital mortality rates greater than 40%. In emergency department, adult patients with suspected infection can be rapidly identified as being more likely to have poor outcomes typical of sepsis if they have at least 2 of the following: quickSOFA (qSOFA): respiratory rate of 22/min or greater, altered mentation, or systolic blood pressure of 100 mm Hg or less. These updated definitions and clinical criteria should replace previous definitions, and facilitate earlier recognition and more timely management of patients with sepsis or at risk of developing sepsis.

 

NSAIDs and Lasix – best of friends.

Eur J Intern Med. 2015 Nov;26(9):685-90.

Ungprasert and co. look at the association between exacerbation of heart failure (HF) and use of non-steroidal anti-inflammatory drugs (NSAIDs). Their systematic review and meta-analysis looked at six studies where the use of conventional NSAIDs was associated with a significantly higher risk of development of exacerbation of HF. The excess risk was approximately 40% for conventional NSAIDs and celecoxib.

 

Dispelling the nice or naughty myth: retrospective observational study of Santa Claus

BMJ 2016; 355

Park et al. report their attempt to determine which factors influence whether Santa Claus will visit children in hospital on Christmas Day. They carried out an observational study in paediatric wards in the UK. They discovered that Santa Claus visited most of the paediatric wards in all four countries: 89% in England, 100% in Northern Ireland, 93% in Scotland, and 92% in Wales. The odds of him not visiting, however, were significantly higher for paediatric wards in areas of higher socioeconomic deprivation in England (odds ratio 1.31 (95% confidence interval 1.04 to 1.71) in England, 1.23 (1.00 to 1.54) in the UK). In contrast, there was no correlation with school absenteeism, conviction rates, or distance to the North Pole. The results of this study dispel the traditional belief that Santa Claus rewards children based on how nice or naughty they have been in the previous year. Santa Claus is less likely to visit children in hospitals in the most deprived areas. Potential solutions include a review of Santa’s contract or employment of local Santas in poorly represented regions. Clearly Santa likes everyone in Northern Ireland too! Merry Christmas and happy holidays!

 

PA Dec 2016

Continue Reading

Resident Clinical Pearl – A New Focus for PoCUS

A New Focus for PoCUS

Elective Resident Clinical Pearl – December 2016

Heather Flemming, PGY4 Emergency Medicine, Dalhousie University, Saint John, New Brunswick

Reviewed by Dr. David Lewis

 

A 70 year old female presents to the emergency department with central abdominal pain and one episode of vomiting.  Her vital signs are stable, but she appears uncomfortable.

You bring the ultrasound machine to the bedside to assess her abdominal aorta. Your exam is challenged by the presence of bowel gas, causing scattering of your ultrasound beam, but is ultimately negative for an abdominal aortic aneurysm. You note that the patient has a midline scar, which she states is from a remote hysterectomy. With increased suspicion for bowel obstruction, you move the curvilinear probe across the abdomen and generate the following images: (Video Below)

The images demonstrate dilated loops of bowel and alternating peristalsis (a ‘to and fro movements’ of bowel contents). This confirms your suspicion for a small bowel obstruction (SBO).

 

Discussion:

Bedside ultrasound is a useful tool in evaluating any patient with abdominal pain, and has shown to be more sensitive and more specific than abdominal xray in diagnosing SBO1. Additional advantages of ultrasound include lack of radiation to the patient, bedside availability and potential to improve ED flow2. Treatments, such as nasogastric tube insertion, and early consultation to general surgery can be expedited by rapid identification. In individuals with recurrent sub-acute SBO, PoCUS may become the investigation of choice, reducing radiation exposure for this group of patients.

 

Pearls for performing a bedside ultrasound for SBO:

Multiple regions of the abdomen should be assessed, including the epigastrium, bilateral colic gutters, and suprapubic regions2. (Image 2).

Image 2 (overlapping survey of all quadrants)

 

Typical SBO ultrasound finding include:

  • ≥3 bowel loops dilated >25mm (Measurements taken at 90° to bowel wall)
  • Transition point – dilated peristalsing small bowel visualized adjacent to non-peristalsing collapsed bowel
  • Increased intraluminal fluid
  • Abnormal peristalsis: Hyperdynamic, alternating or absent peristalsis
  • Abdominal free fluid may also be present

 

Credit: ACEP.org

 

References

  1. Jang, Timothy B. Schindler, Danielle. Kaji, Amy H. Bedside ultrasonography for the detection of small bowel obstruction in the emergency department. Emerg Med J 2011 28:676-678.
  2. Chao, Gharahbaghian. Tips and Tricks: Clinical Ultrasound for Small Bowel Obstruction – A Better Diagnostic Tool? https://www.acep.org/content.aspx?id=100218
  1. http://www.emdocs.net/ultrasound-small-bowel-obstruction/
  1. A video on Ultrasound in Small Bowel Obstruction by the Academy of Emergency Ultrasound can be found here: https://vimeo.com/69551555
Continue Reading

RSI Drugs

RSI Drugs Summary

Dr James French

 


  • REDUCE THE DOSE OF INDUCTION AGENTS IN HYPOTENSION or when Pulse Rate is greater than Systolic Blood Pressure.
  • INCREASE THE DOSE OF PARALYZING AGENTS IN HYPOTENSION.

 

Give the sedative first, followed by a flush, followed by the parlaying agent, followed by a small fluid bolus.

 


KETAMINE

Ketamine is a dissociating sedative that that can also be used in lower doses for procedural sedation ( i.v. 0.5 – 1.0mg/kg) and as a powerful analgesic (i.v. 0.3mg/Kg). When used for RSI the dose is 2.0 mg/Kg and is halved to 1.0 mg/kg in hypotension or a raised shock index (i.e. if the pulse is greater than the systolic blood pressure) . Ketamine causes hypertension, tachycardia and vomiting as its main side effects. When used for procedural sedation Ketamine causes less respiratory depression than other sedatives. Patients can misperceive stimuli during sedation and recovery and become agitated; this is called “emergence”.

Ketamine is available as 10mg/ml concentration for IV use and a 50 mg/ml concentration for IM use only – confusing the concentration being used can cause cardiac arrest. The 10mg/ml concentration is used neat for analgesia, sedation and RSI in adult patients.

 


 

ETOMIDATE

Etomidate is a sedative. It has no analgesic effect.

Etomidate’s chief side effect is hypotension, hypoventilation and adrenal suppression. When used for RSI iv the dose is 0.3. In hypotension or is the pulse rate us greater than the systolic blood pressure the dose of per Kg is halved from 0.3 to 0.15 mg/kg to prevent post induction hemodynamic instability.

Etomidate can cause a myoclonic jerk which are a single gross limb movements. It has a rapid onset of 45 seconds.

Etomidate is short acting – The sedation effect lasts about 5 minutes.

Etomidate is usually dispensed as a white liquid in a single 10ml ampoule, which has a concentration of 2mg/ml.

 


 

SUCCINYCHOLINE

Succinylcholine is a depolarizing muscle relaxant that acts on acetylcholine receptors. It works by binding non-competitively to the muscular acetylcholine receptor. This causes muscular relaxation by “burning out” the neuromuscular mechanism. This activation of the neuromuscular junction causes fasiculations.

Succinylcholine also acts on the acetylcholine receptors on the heart causing bradycardia as its primary side effect, particularly when giving a second dose. 5 mcg/kg of Atropine is therefor given before the second dose of Succinylcholine and in children under one year of age (who are more prone to bradycardia).

Succinylcholine works rapidly, with optimal relaxation in the jaw produced 10 seconds after fasciculations finish in the face.

The paralyzing effect wears off after about 6 – 9 minutes.

Succinylcholine provides no analgesic or sedative effect so it is essential that analgesia and sedation are given after anesthesia.

Succinylcholine is given neat. is a clear liquid and is supplied in one concentration of 20 mg/ml in a glass ampoule containing 100mg.

Succinylcholine dose in adults is 1.5 mg kg. The dose can be increased in severe shock to 2.0 mg/kg and in children. Do not “underdose” the paralyzing drugs so round up when doing drug calculations. Especially do not practice “ampoule based medicine” when using paralyzing agents in emergency situations.

Succinylcholine cannot be given to anybody with acute or chronic neuromuscular disease.

 


 

ROCURONIUM

Rocuronium is a non-depolarizing muscle relaxant. It does not activate the acetylcholine receptor but blocks the bodies own neurotransmitter. It therefore does not cause fasciculations.

Rocuronium also blocks the action of acetylcholine on the heart causing tachycardia as its primary side effect.

Rocuronium is fast onset proving intubating conditions in 60 seconds when given in the correct dose – it is essential that this period is timed after administration.

Rocuronium is long acting providing muscular parlays for about 45 minutes. It provides no analgesic or sedative effect so it is essential that analgesia and sedation are given after anesthesia.

Rocuronium is given as 1.5mg/kg, which is a dose increase, so does not need to be adjusted in severe hypotension.

Rocuronium is given neat and is supplied as a colourless liquid of 10 mg/ml concentration.

 


Lessons from Case Review and the Literature.

 

  1. REDUCE THE DOSE OF INDUCTION AGENTS IN HYPOTENSION.
  2. INCREASE THE DOSE OF PARALYZING AGENTS IN HYPOTENSION.
  3. Give the sedative first, followed by a flush, followed by the parlaying agent, followed by a small fluid bolus.
  4. Time from the moment the drugs are given to prevent the intubator from making the first attempt too early.
  5. When pushing the drugs make sure the IV line is blocked off to prevent the drugs from being pushed back into the giving set.
  6. Use IV access on the opposite side of the blood pressure cuff.
  7. Always follow RSI drugs with analgesia first after the tube is secured.
  8. Give the RSI drugs rapidly, fast IV push, sedative first, then the paralysing agent followed by a large flush or fluid bolus.
  9. Do not paralyze the hypoxic patient until every attempt to restore hypoxia has been corrected.
  10. Resuscitate the circulation with haemorrhage control and blood products, or fluid and vasopressors prior to RSI.

 

Continue Reading