CAEP 2019 – Crowded House?

CAEP 2019, Halifax, May 26-29, 2019

CAEP By The Ocean – Crowding Track – May 26th 1pm


Are you concerned about ED Crowding? After a busy shift do you ever “..dream it’s over”? Do you work in a “Crowded House”?



Come to the Crowded House Track at CAEP19 on May 26th 1pm. International and Canadian experts present their experience and we discuss possible solutions.

Including Dr. Taj Hassan (President Royal College of Emergency Medicine UK), Dr. Alecs Chochinov (President CAEP), Dr. Judy Morris and Dr. David Lewis.

Join in the debate – “are redirection strategies better than accommodation strategies” – should we invest all our energy in redirection to alternative services or should we accept that we can’t stem the tide and bring all these services under one roof?


Register for CAEP19 – CAEP By The Ocean. https://caepconference.ca/registration/

Crowded House – Don’t Dream It’s Over

Continue Reading

Managing Shocks – not shock…

ED Rounds – Jan 2019

Andrew Lohoar


Dr. Lohoar presents rounds on the topic of ‘Electrical Injuries’ including electrocution, lightening strike and Taser injuries.



X2 Darts have a double barb, X26 Darts come in extra long ‘winter coat’ and standard ‘summer’ varieties.



Continue Reading

Trauma Reflections – December 2018

Thanks to Dr. Andrew Lohoar and Sue Benjamin for leading the discussions this month


Major points of interest:

A)  TXA – “When did this MVA actually happen?”

Only 75% of cases receiving TXA are receiving it within 3 hours of injury. And only ½ of theses cases are having the drip started.

CRASH study found patients receiving TXA after 3 hours do not benefit.

B)   Bleeding on warfarin

If emergent reversal of anti-coagulation from warfarin is needed, vitamin K (5-10mg) should be given IV (not PO), along with PCC.

C)  Trauma transfers from outside of our region in the post TTL era..

Consultants accepting transfers from other regions through NB trauma line may request that patient stop in ED first for evaluation/imaging prior to transfer to floor or ICE.

The consultant should make every effort to evaluate their patient on arrival to ED  

Expectation is that TCP and/or consultant clearly delineate their plan with ED charge MD.   

E) Matthew 4:1:1  “Man shall not live by [RBCs] alone”

I might not have gotten that one quite right, but the MTP policy follows a 4:1:1 rule – after 4th unit of PRBCs, give a unit of platelets and FFP.

F) This guy is bleeding all over my triage room!

Patients occasionally “self-present” to triage with significant injuries or a history of a high energy MOI. The most efficient way to mobilize resources is to have the triage RN call a “Trauma CODE”.   

G)  Analgesia in pediatric population

Pain management in pediatric population is often challenging. If IV access is delayed consider alternative routes – intranasal fentanyl 1.5 ug/kg using MAD (mucosal atomizing device).

H)  May the hoses R.I.P.

Chest tube sizes 36 F and 345F are now no longer being stocked on chest tube cart.

I)     Post-intubation sedation

Post intubation sedation and analgesia can be challenging. Key is to avoid starting medications that could potentially drop blood pressure at very high infusion rates, but we need sedation and analgesia promptly.

Consider bolus of sedatives and analgesics prior to initiating infusions and prn boluses afterwards. Inadequate analgesia is often the cause of continued agitation.

Continue Reading

Resident Clinical Pearl – Scalp Lacerations – “You Can Leave Your HAT On!”

You can leave your “HAT” on: An approach to scalp lacerations and review of the hair apposition technique

Resident Clinical Pearl (RCP) – November 2018

Devon Webster – FMEM PGY1, Dalhousie University, Saint John, New Brunswick

Reviewed by Dr. David Lewis

 


Quick case!

Joe Cocker and Randy Newman had an altercation while debating who recorded the best version of “You can leave your hat on”. Randy won (mainly because he is still alive), but unfortunately he sustained a nasty head injury in the process. You deduce that he does not require a CT head but he’s got a 7 cm lac over his scalp. What should you do next?

 

Review of scalp anatomy:

The scalp is divided into 5 layers, which can conveniently be recalled using the mnemonic, SCALP:

  • Skin

    Ref 1

  • dense Connective tissue
  • Aponeurosis
  • Loose connective tissue
  • Periosteum

 

Recall that the dense connective tissue layer is richly vascularized. The tight adhesion of these vessels to the connective tissue inhibits effective vasoconstriction, hence the profuse bleeding often seen with scalp wounds.

The loose connective tissue layer = the DANGER ZONE when lacerated. This layer contains the emissary veins, which connect with the intracranial venous sinuses. Consequently, lacerations reaching this layer are high risk for spreading infection to the meninges

 

 

 

Examining the laceration:

Ref 2

Prior to choosing the most appropriate closure technique, the wound should be cleaned and cleared of debris and the depth of the wound should be determined.

  • Superficial wounds: generally do not gape and have not gone beyond the aponeurosis. Adherence to the aponeurosis should prevent the wound edges from separating.
  • Deep wounds: gape widely due to laceration of the aponeurosis in the coronal plane. Tension secondary to the occipitofrontalis muscles will pull the wound open in opposite directions.

 

Ref 2

(A) Scalp laceration that extends through the aponeurosis
(B) CT showing an associated skull fracture

 

Choosing a closure technique:

A. The HAT technique: Hair Apposition Technique

What it is: A fast and simple technique for superficial laceration closure whereby the physician twists hair on either side of the laceration together and seals the twist with a drop of glue for primary closure. Various advantages, as described below, including no need for follow up suture or staple removal.

When to use it: Consider using HAT for linear, superficial lacerations, <10 cm that have achieved appropriate hemostasis (assuming the patient has hair!).

The evidence for HAT: An RCT based out of Singapore, comparing suturing (n=93) to HAT (n=96) for scalp lacerations <10 cm found HAT to be equally acceptable if not superior to suturing. Patients were more satisfied (100% vs 75%), had less scarring (6.3% vs 20.4%), fewer complications (7.3% vs 21.5%), lower pain scores (2 vs 4), shorter procedure times (5 vs 15 min) and less wound breakdown (0% vs 4.3%) (Ref 4)

A follow up study by the same group assessing cost-effectiveness of HAT compared to suturing found a cost savings of $28.50 USD (95% CI $16.30 to $43.40) in favor of HAT when taking into consideration materials, staff time, need for removal appointments and treatment of complications (Ref 5)

A retrospective observational study comparing HAT (n=37) to suturing (n=48) and stapling (n=49) also found HAT to be superior to both suturing and stapling due to increased patient satisfaction at days 7 and 15, reduced pain, lower cosmetic issues and complication rates (Ref 6)

 

How to do HAT (see diagram):

  1. Choose 4-5 strands of hair in a bundle on either side of laceration
  2. Cross the strands
  3. Make a single twist to appose the wound edges
  4. Secure with a single drop of glue
  5. Advise patient that the glue will eventually come off on its on and no formal removal is required.

Cautions with HAT: avoid getting glue into the wound as it may result in wide scarring with a bald spot (Ref 3)

 

B. Wound Staples

If the HAT technique is not an option (no glue, bald, etc) and the lac is superficial (above the aponeurosis), staples are preferred over suturing due to Ref 3:

  • Rapid closure of wound edges
  • Non-circumferential wound closure avoid potential strangulation
  • No cross hatch marks
  • Less expensive

C. Wound Sutures

Sutures are appropriate for deep, gaping wounds or those requiring immediate hemostasis.

Suture is required for lacerations through the aponeurosis to reduce spread of infection, hematoma formation and increased scarring. Furthermore, inadequate repair of the aponeurosis may result in asymmetric contraction of the frontalis muscle (Ref 3)

 

 

Final thoughts post-closure:

  • White petroleum ointment is as effective as antibiotic ointment in post-procedural care (Ref 7). Furthermore, the next time you consider handing out bacitracin (or polysporin), recall that it was declared ‘contact allergen of the year for 2003’ by the American Contact Dermatitis Society. Bacitracin is among the top ten allergens in the US causing allergic contact dermatitis (Ref 8).
  • Wetting the wound as early as 12 hrs post-repair does not increase the risk of infection (Ref 7). Consider delaying wetting in the case of HAT.

Bottom line:

  • For superficial lacerations, <10 cm with adequate hemostatic control, the hair apposition technique is a fast, cost-effective method of wound closure with high patient satisfaction, reduced pain and lower complications compared to suturing and staples.
  • Lacerations through the aponeurosis require suturing to reduce rates of complications.
  • Consider use of petroleum jelly over antibiotic containing ointments such as polysporin.

 

Video

 


 

References:

 

1 Hunt, W. “The Scalp.” Teachmeanatomy.info. Last updated Oct 24, 2018. Accessed Nov 28, 2018. URL:  https://teachmeanatomy.info/head/areas/scalp/

2 Dickinson, E. Uptodate. Accessed Nov 28, 2018 URL: https://www.uptodate.com/contents/image?imageKey=EM%2F87633&topicKey=EM%2F16696&source=see_link

3 Hollander, J. “Assessment and management of scalp lacerations.” Uptodate. Updated Feb 23, 2018. Accessed Nov 28, 2018. URL: https://www.uptodate.com/contents/assessment-and-management-of-scalp-lacerations

4 Ong ME. “A randomized controlled trial comparing the hair apposition technique with tissue glue to standard suturing in scalp lacerations (HAT study).” Annals of Emergency Medicine. July 2002. 40:1. 19-26.

5 Ong ME. “Cost-effectiveness of hair apposition technique compared with standard suturing in scalp lacerations.” Annals of Emergency Medicine. 2005 Sept; 46(3):237-42.

6 Ozturk D. “A retrospective observational study comparing hair apposition technique, suturing and stapling for scalp lacerations.” World J Emerg Surg. 2013; 8:27.

7 Forsch, R. “Essentials of skin laceration repair.” American Family Physician.

8 Fraser, J. “Allergy to bacitracin.” Dermnet NZ. September 2015. Accessed on Nov 28, 2018 URL: https://www.dermnetnz.org/topics/allergy-to-bacitracin/

 


 Randy:

 

Joe:

 

 

Continue Reading

Trauma Reflections – October 2018

Thanks to Dr. Andrew Lohoar and Sue Benjamin for leading the discussions this month

 


Major points of interest:

 

A)  Intubated patients should not need restraints..

Post intubation sedation and analgesia can be challenging. Key is to avoid starting medications that could potentially drop blood pressure at very high infusion rates, but we need sedation and analgesia promptly.

Consider bolus of sedatives and analgesics prior to initiating infusions and prn boluses afterwards. Inadequate analgesia is often the cause of continued agitation.

 

B)   But what about this guy with the BP of low / really low?

Consider “vitamin K” – ketamine – can augment BP in patients who are not catecholamine depleted.

 

C)  Trauma patients you know will require consultants

When services are known to be required for patients prior to arrival (intubated, critical ortho injuries, penetrating trauma, transfers etc.) call a level A activation – consultants should meet patient with you. Give the consultants notice when patient is 15 minutes out.

Required consultants need to attend to critically injured in a timely fashion. Escalate to department head or chief of staff if there is unreasonable delay.

View the SJRHEM Trauma Page for list of definitions including Trauma Team, Activation Levels etc

 

E) Managing the pediatric airway – adrenalizing for all involved

Pediatric trauma is the pinnacle of a HALF (high acuity, low frequency) event. Team approach is key. Get out the Broselow tape.

Bradycardia with intubation attempts is not infrequent in youngest patients. Consider atropine as pre-med if  < 1 year of age or < 5 years of age and using succinylcholine.

 

F) MTP

Do not forget platelets and plasma if onto 4th unit of PRBCs – 4:1:1 ratio.

 

G)  Where is this patient being admitted?

Not to the hospitalist service, that is where!

Patients with significant injuries, but not needing immediate surgical intervention, should be admitted/observed in ICE x 24 hrs. Department head and/or chief of staff are available to assist if needed.

 

H)  Chest tube types and sizes

Pigtail catheters for traumatic pneumothorax are effective, less painful and are gaining favour as an alternative to traditional chest tubes. As for sizes, there is likely little benefit for 36F over 32 F catheters – probably time to retire these monsters from the chest tube cart.

I)     Why do bedside U/S if patient about to go to CT?

Chest scan might prompt chest tube placement prior to CT if pneumothorax is identified. Although identifying blood in the abdomen prior to CT may not change your management – it may prompt an earlier call to general surgery.

Continue Reading

Basic ECG Interpretation

Bare Bones Basics of ECG Interpretation from a First Year Medical Student Perspective

Medical Student Clinical Pearl – October 2018

Victoria Kulesza – Med I Class of 2021, Dalhousie Medicine New Brunswick 

Reviewed and Edited by Dr. David Lewis


Physiology

Electrical Events and Corresponding Waves and Lines on a Standard ECG

Basic Interpretation

Common Arrhythmias

Summary

Suggested Resources

References


Physiology

Cardiac cells are electrically polarized in their resting state, with the inside holding a negative charge in comparison to the outside.1,3 Membrane pumps maintain this electrical polarity through the regulation of ions including potassium, sodium, chloride and calcium.1 Depolarization is the key electrical event of the heart that occurs spontaneously in some cells and is initiated by the arrival of an electrical impulse carrying positively charged ions in other cells.1 There are 3 key cells involved in the electrical and mechanical activities that occur within the heart:

 

The sequential depolarization of cells creates a wave of depolarization that transmits across the entire heart, representing a flow of electricity that can be detected by the electrodes placed on the surface of that patient’s body. The waveforms visible on the ECG represent the electrical activity of the myocardial cells, the cells making up the vast majority of the heart.1 At the end of the depolarization process, cardiac cells are repolarized through membrane pumps reversing the flow of ions. Both the depolarization and repolarization are represented as the wave forms on the ECG.1


Electrical Events and Corresponding Waves and Lines on a Standard ECG

P Wave

The heartbeat is initiated in the sinoatrial node located in the posterior wall of the right atrium.4 After the sinus node fires, the atrial myocardium is depolarized in a wave-like fashion causing the atrial contraction. This depolarization and contraction of the atrial myocardial cells results in the first P wave.1 The wave of depolarization does not immediately pass through to the ventricles, the atrioventricular node located at the floor of the right atrium, slows the conduction of the electrical impulse to allow the atria to fully complete their contraction. 1,4 The contraction of the atria forces blood from the atria through the atrio-ventricular valves, known as the tricuspid and mitral valves, into the ventricles.3

PR Interval

This interval is the time that is required for the electrical impulse to travel from the atria, through the AV node, bundle of His, bundle branches and Purkinje fibers to the point where the ventricular myocardium begins its depolarization.5 As blood flows through the AV valves the physiologic pause in electrical conduction is represented on the EKG as the flat line following the initial P wave. The ventricular conduction system is composed of 3 parts including the Bundle of His, Bundle Branches and the Terminal Purkinje Fibers.1 The ventricular depolarization is rapidly transmitted through the Bundle of His which emerges from the AV node and subsequently bifurcates into the left and right bundle branches which carry the impulse down the interventricular septum to their terminating fascicles in multiple Purkinje fibers.1,3 Once this current is delivered to the ventricular myocardium the depolarization causes ventricular contraction visible on the ECG as the QRS complex.1

PR Segment

A straight line between the end of the P wave and the start of the QRS complex reflects the time between the end of atrial depolarization and the start of ventricular depolarization.1

QRS Complex

The QRS complex consists of 3 individual waves in a normal conduction1,3:

  • Q Wave: first deflection downward
  • R Wave: first upward deflection
  • S Wave: first downward deflection subsequent to an upward deflection

A complete QRS complex represents ventricular depolarization as well as the initiation of ventricular contraction.1,3 The use of the term QRS Interval describes the duration of the QRS complex alone indicating the duration of ventricular depolarization specifically.1

ST Segment

A straight line between the end of the QRS complex and the beginning of the T wave known as the ST segment measures the time from the end of ventricular depolarization to the beginning of repolarization.1

T Wave

Following the depolarization of the myocardial cells, there is a short refractory period and subsequent recovery phase identified as the T wave on the ECG.1,3,5 This is phase of ventricular repolarization that begins after the QRS and is completed at the end of the T wave.3,5 Repolarization is a slower process than the depolarization which is illustrated by the broader nature of the T wave in comparison to the QRS.1,5

QT Interval

This interval includes the QRS complex, ST segment as well as the T wave which allows for the measurement of time between the beginning of ventricular depolarization to the end of ventricular repolarization.


 

Basic Interpretation

The most effective way to ensure clinically significant abnormalities are not missed on ECG is to develop a consistent order of analysis. One suggested order is as follows:

 

A. Determine Rate:

  1. Sinus Tachycardia = >100 BPM
  2. Sinus Bradycardia = <60 BPM
  3. Three Ways to Determine Rate:
    • Identify an R wave that falls on or near one of the heavy lines of the ECG strip, count the number of large squares between this first R wave and the beginning of the subsequent wave. Divide 300 by the number of large squares between the R waves to determine the number of cardiac cycles per minute. Counting the number of small squares between R waves and dividing 1500 by this number would identify with greater accuracy the heart rate.1
    • Identify the series of small pink indicators above the rhythm strip that identify 3 second intervals and count the number of cycles between two 3 second intervals – multiply this number by 10 to identify the number of beats per minute.1
    • In the event of an irregular heartbeat identify the number of QRS complexes and multiply this number by 6. Each started ECG paper reads at 25mm/s therefore 1 ECG represents 10 seconds of activity.2

Thaler 2015

 

B. Intervals:

Identify the length of the PR and QT Intervals as well as the width of the QRS complexes

Normal Interval Lengths5:

  1. PR = 0.12 – 0.20 sec
  2. QT = varies with overall heart rate
  3. QRS = 0.05 – 0.10 sec

 

 

 

 

 

 

 

C. Rhythm5:

  1. P waves present and normal?
  2. QRS complexes wide or narrow? General pattern – regular, regularly irregular or irregularly irregular?
    1. Wide = >0.12 sec
    2. Narrow = <0.12 sec
  3. Relationship between P waves and QRS complexes
  4. Overall rhythm regular or irregular?

 

D. Axis

  1. The ECG electrodes record the average direction of flow of electrical current within the heart.
  2. Lead I is the zero reference point, any axis lying below is deemed positive while those lying above are deemed negative.
  3. When the wave of depolarization begins, any lead that views this wave as moving towards it will record this as a positive deflection on the ECG paper.
  4. Assessment of P Wave Axis:
    • Atrial depolarization begins at the sinus node in the right atrium and follows a right to left and inferior direction. This depolarization of the right to left atria should demonstrate a positive deflection in leads aVL, I, II and aVF.
  5. Assessment of QRS Complex Axis:
    • As the wave of depolarization moves through the interventricular septum the current moves in a left to right direction. This wave may not be visible on the ECG but when apparent appears as a negative deflection in leads I, aVL (V5 and V6). As a result of the increased size of the left ventricle in comparison to the right, the remainder of the QRS complex vector of flow is directed leftward and is demonstrated as the positively deflected R wave in most left lateral and inferior leads. The aVR lead will record a deep negative deflection based on the direction of flow being away from this lead.

 


 

Common Arrhythmias1

1. Sinus Tachycardia

  • HR >100 bpm
  • Can be normal or pathologic, strenuous exercise can cause HR above 100.

 

2. Sinus Bradycardia

  • HR <60 bpm
  • Can be normal or pathologic, many well-conditioned athletes maintain a resting HR below 60.

 

3. Paroxysmal Supraventricular Tachycardia

  • HR 150-250 bpm
  • Narrow complex QRS
  • Very common, sudden onset, sudden termination.
  • Clinical Symptoms: palpitations, shortness of breath, dizziness. Possibly induced by alcohol, caffeine or extreme excitement.

 

4. Atrial Flutter

  • P waves 250-350 bpm
  • Atrial depolarization occurs so rapidly that discrete P waves are indiscernible.
  • Leads II and III demonstrate a prominent saw-tooth
  • AV node cannot handle the number of atrial impulses therefore there is an unequal number of P waves to QRS complexes – some electrical impulses from the sinus node bump into a refractory node and go no further, this is called AV Block. 2:1 block is most common while 3:1 and 4:1 are also frequently observed.
  • Clinical Symptoms: shortness of breath, angina type discomfort.

 

 

5. Atrial Fibrillation

  • AV Node may receive >500 impulses per minute
  • More common than atrial flutter, most commonly sustained arrhythmia.
  • No true P waves are discernible, AV node allows occasional impulses to pass through to the ventricles, creating an irregularly irregular ventricular rate often in the range of 120-180 bpm.
  • Clinical Symptoms: some patients experience no symptoms, others experience shortness of breath, chest pain, palpitations and dizziness.

 

6. Premature Ventricular Contractions

  • Most common ventricular arrhythmia.
  • Retrograde P wave or no P wave prior to the QRS.
  • Wide QRS of at least 0.12 seconds in majority of the leads often followed by a compensatory pause before the subsequent beat.
  • Often occur randomly and rarely require treatment unless an isolated PVC is noted in the setting of acute MI as it may trigger ventricular tachycardia or ventricular fibrillation.
  • When to worry:
    • Frequent PVCs
    • Consecutive runs, 3+ in a row
    • Multiform – demonstrating variation in the site of origin
    • Occurring on the T wave – “R-on-T” phenomenon
    • PVC in the setting of an acute MI

 

 

7. Ventricular Tachycardia

  • Rate 120-200 bpm
  • Wide complex QRS
  • A run of 3+ consecutive PVCs.
  • Prolonged ventricular tachycardia is an emergency requiring immediate treatment to prevent cardiac arrest.
  • May be uniform or polymorphic, uniform being more closely associated with healed infarctions and polymorphic waveforms more commonly associated with acute coronary events.

 

8. Ventricular Fibrillation

  • Spasmodic tracings or coarse ventricular fibrillation or fine ventricular fibrillation without any true QRS complexes.
  • Heart generates no cardiac output, CPR and defibrillation are required immediately.
  • Most common arrhythmia in adults who experience sudden death.
  • Common predisposing factors:
    • Myocardial ischemia/infarction
    • Heart failure
    • Electrolyte disturbances
    • Hypoxemia or hypercapnia
    • Hypotension or shock
    • Overdoses of stimulants especially when used in combination with others

 


 

Summary

 


 

 


 

Suggested Resources

Teaching Medicine – Rhythm Strip Interpretation Practice

ECG Guide Mobile Smartphone App

  • Available through itunes app store

The Only EKG Book You’ll Ever Need

  • PDF available online through Dalhousie Library

 

References

  1. Thaler, M. S. (2015). The Only EKG Book You’ll Ever Need (9th ed.). Lippincott, Williams & Wilkins.
  2. Andrade, J. (2013). ECG Guide [Mobile application software]. Retrieved from http://itunes.apple.com
  3. Dubin, D. (2000). Rapid interpretation of EKG’s: An interactive course (6th ed.). Tampa, Fla.: Cover Pub.
  4. McKinley, M. P., OLoughlin, V. D., Harris, R. T., & Pennefather-O’Brien, E. E. (2015). Human anatomy (4th ed.). New York, NY: McGraw-Hill Education.
  5. Khan, M. (2008). Rapid ECG interpretation (3rd ed., Contemporary cardiology (Totowa, N.J). Totowa, N.J.: Human Press.
  6. Thomas, V. (n.d.). Premature Ventricular Contractions Treatment Cape Town. Retrieved from https://cardiorhythm.co.za/premature-ventricular-contractions/
  7. https://inside.fammed.wisc.edu/medstudent/pcc/ecg/axis.html
Continue Reading

EM Reflections – October 2018

Thanks to Dr. Paul Page for leading the discussions this month

Edited by Dr David Lewis 

 


 

Top tips from this month’s rounds:

 

Trauma – Secondary Survey

DNAR Considerations 

ED Neonatal Equipment

 


Trauma – Secondary Survey

The secondary survey is performed once the primary survey and resuscitation has been completed.

The secondary survey does not begin until the primary survey (ABCDEs) is completed, resuscitative efforts are underway, and the normalization of vital functions has been demonstrated. When additional personnel are available, part of the secondary survey may be conducted while the other personnel attend to the primary survey. In this setting the conduction of the secondary survey should not interfere with the primary survey, which takes first priority. ATLS 9e

This means that on occasions trauma patients may be transferred to the OR or ICU before the secondary survey has been completed. The secondary survey is a thorough head to toe examination including where indicated adjunct investigations e.g limb radiographs. This assessment must be carefully performed and documented. It should not be rushed.

If there is not enough time to complete a thorough secondary survey (e.g patient transferred to OR during primary survey) then this should be communicated to the surgeon or other responsible physician (e.g ICU) and the documentation should reflect this.

We would recommend that all trauma patients admitted to the ICU undergo a repeat secondary survey assessment as part of the standard admission process. In some systems this is referred to as a Tertiary survey.

This systematic review reports a reduction missed injury rate when a tertiary survey is used as part of a trauma system.

Trauma.org article on tertiary survey


DNAR Considerations 

The CMPA provides excellent guidance for clinicians considering Do Not Attempt Resuscitation orders. CMPA Website

CMPA – Key Concepts for End of Life Issues

  • The best interests of the patient are paramount.

  • The capable patient has the right to consent to or refuse medical treatment, including life-sustaining treatment.

  • Thoughtful and timely advance care planning, discussion, and documentation of a patient’s wishes and healthcare goals can help avoid misunderstandings.

  • Physicians should be familiar with any relevant laws and regulatory authority (College) policies concerning end-of-life care, and the withholding or withdrawing of life-sustaining treatment, and medical assistance in dying.

  • When considering placing a do-not-resuscitate order in the medical record, or acting upon a do-not-resuscitate order, consent from the patient or substitute decision-maker is advisable. It may also be helpful and appropriate to consult with physician colleagues and the patient’s family to determine support for the order.

  • Decisions about withholding or withdrawing life-sustaining treatment that is considered futile or not medically indicated should be discussed with the patient, or the substitute decision-maker on behalf of an incapable patient. When consensus is not achieved despite discussions with the substitute decision-maker, the family, and others such as ethics consultants, patient advocates, and spiritual advisors, it may be necessary to make an application to the court (or an administrative body) or seek intervention from the local public guardian’s office.

  • Physicians considering a request for medical assistance in dying should be familiar with the eligibility criteria set out in the Criminal Codewith applicable provincial legislation, and with applicable regulatory authority (College) guidelines.

  • Physicians should be familiar with the role of advance directives (including living wills).

  • End-of-life decisions should be carefully documented in the patient’s medical record.

Horizon Health, NB uses these accepted Canadian DNAR definitions:

 


 

ED Neonatal Equipment

Perinatal Services BC, Canada have published an excellent document – Standards for Neonatal Resuscitation

It includes this Appendix for suggested Radiant Warmer Equipment checklist:

 

Continue Reading