SJRHEM Journal Club Report Oct 2017

SJRHEM Journal Club Report Oct 2017

Allyson Cornelis, R1 iFMEM

Hosted by Dr Andrew Lohoar


Abstract:

Idarucizumab for Dabigatran Reversal — Full Cohort Analysis

Charles V. Pollack, Jr., M.D., Paul A. Reilly, Ph.D., Joanne van Ryn, Ph.D., John W. Eikelboom, M.B., B.S., Stephan Glund, Ph.D., Richard A. Bernstein, M.D., Ph.D., Robert Dubiel, Pharm.D., Menno V. Huisman, M.D., Ph.D., Elaine M. Hylek, M.D., Chak-Wah Kam, M.D., Pieter W. Kamphuisen, M.D., Ph.D., Jörg Kreuzer, M.D., Jerrold H. Levy, M.D., Gordon Royle, M.D., Frank W. Sellke, M.D., Joachim Stangier, Ph.D., Thorsten Steiner, M.D., Peter Verhamme, M.D., Bushi Wang, Ph.D., Laura Young, M.D., and Jeffrey I. Weitz, M.D.

N Engl J Med 2017; 377:431-441August 3, 2017DOI: 10.1056/NEJMoa1707278

 

BACKGROUND
Idarucizumab, a monoclonal antibody fragment, was developed to reverse the anticoagulant effect of dabigatran.

METHODS
We performed a multicenter, prospective, open-label study to determine whether 5 g of intravenous idarucizumab would be able to reverse the anticoagulant effect of dabigatran in patients who had uncontrolled bleeding (group A) or were about to undergo an urgent procedure (group B). The primary end point was the maximum percentage reversal of the anticoagulant effect of dabigatran within 4 hours after the administration of idarucizumab, on the basis of the diluted thrombin time or ecarin clotting time. Secondary end points included the restoration of hemostasis and safety measures.

RESULTS
A total of 503 patients were enrolled: 301 in group A, and 202 in group B. The median maximum percentage reversal of dabigatran was 100% (95% confidence interval, 100 to 100), on the basis of either the diluted thrombin time or the ecarin clotting time. In group A, 137 patients (45.5%) presented with gastrointestinal bleeding and 98 (32.6%) presented with intracranial hemorrhage; among the patients who could be assessed, the median time to the cessation of bleeding was 2.5 hours. In group B, the median time to the initiation of the intended procedure was 1.6 hours; periprocedural hemostasis was assessed as normal in 93.4% of the patients, mildly abnormal in 5.1%, and moderately abnormal in 1.5%. At 90 days, thrombotic events had occurred in 6.3% of the patients in group A and in 7.4% in group B, and the mortality rate was 18.8% and 18.9%, respectively. There were no serious adverse safety signals.

CONCLUSIONS
In emergency situations, idarucizumab rapidly, durably, and safely reversed the anticoagulant effect of dabigatran. (Funded by Boehringer Ingelheim; RE-VERSE AD ClinicalTrials.gov number, NCT02104947.)

 

http://www.nejm.org/doi/full/10.1056/NEJMoa1707278

 


SJRHEM Journal Club Report

 

Download (PDF, 89KB)

 

Continue Reading

What we missed in FOAM October 2017

Welcome to SJRHEM’s newest feature, “Best of FOAM”. This is a quick curated list of the best free open access medical education the internet has to offer!

Subscribe to our twitter feed for regular updates and enjoy!

 

EM procedures

 

Clinical summaries

 

Kavish Chandra, R3 FMEM, Dalhousie University, Saint John, New Brunswick

 

Continue Reading

What we missed in FOAM Sept 2017

 

Welcome to SJRHEM’s newest feature, “Best of FOAM”. This is a quick curated list of the best free open access medical education the internet has to offer!

Subscribe to our twitter feed for regular updates and enjoy!

 

EM procedures

Clinical tools

 

Clinical summaries

 

Kavish Chandra, R3 FMEM, Dalhousie University, Saint John, New Brunswick

 

 

Continue Reading

RCP – the “Easy IJ”

The “easy IJ”, a quick solution for difficult intravenous access?

Resident Clinical Pearl (RCP) – September 2017

Kavish Chandra, R3 FMEM, Dalhousie University, Saint John, New Brunswick

Reviewed by Dr. David Lewis

The importance of intravenous (IV) access is something seared in the mind of every practicing emergency department physician. Over the years, central intravenous access for difficult IV access has been obviated by the intraosseous drill and line. Furthermore, we just see and do less central IV lines. The likely reasons for this are that running vasopressors in peripheral intravenous (IV) lines is becoming more accepted as well as the increased time associated with placing a fully sterile central line (draping, etc.) as well as the risks of the over-the-wire procedure (infection, deep vein thrombosis, cardiac arrhythmias).

Enter the internal jugular vein catheterization using a peripheral IV catheter1, which is placed under a limited sterile environment. Is the 5 minutes to establish access that “easy” when peripheral access and external jugular catheterization has failed?

The materials required:

  1. US machine with high-frequency linear transducer probe
  2. Chlorhexidine swab
  3. 4.8-cm, 18-gauge single lumen catheter
  4. Two bio-occlusive adherent dressings
  5. Sterile ultrasound jelly
  6. A loop catheter extension
  7. A saline flush

Figure 1. Visual diagram of required materials for the “easy IJ”, adapted from Moayedi et al. (2016).

 

The steps:

  • Place your patient in the Trendelenburg position or instruct them to perform a Valsalva maneuver
  • The needle is inserted into the skin at approximately 45 degrees
  • Ultrasound is used to confirm real-time placement out of plane, followed by in-plane visualization to see the catheter in the vessel lumen
  • See this video for a demonstration: https://www.youtube.com/watch?v=FjSmbUWXznY

 

 

 

What does the evidence say2?

  • When studied in stable emergency department patients when peripheral or external jugular venous access was unsuccessful, the success rate of this procedure was 88% (95% CI 79-94)
  • The mean time to procedure completion was 4.4 minutes (3.8-4.9)
  • In 83 access attempts, there were no cases of pneumothorax, infection or arterial puncture
  • There was a 14% loss of IV patency immediately after insertion
  • Painful? Don’t forget, these lines were placed without local anesthesia; however, the mean pain score was 3.9 out of 10 (3.4-4.5)

Practical considerations:

So will this technique change your practice? A few things to be aware of:

  • In obese patients, the target vessel will be inherently more difficult to visualize, as well as the catheter length in this study may not be long enough to ensure patency. The median BMI in the Moayedi et al. (2016) study was 27
  • Operator skill: the vast majority of lines were placed by clinicians experienced in ultrasound guided line placement. Success and time to placement may be increased as experience decreases
  • Will more definitive access be required? The catheters placed in this study were largely only used for 24 hours. This would certainly be more than sufficient during the treatment of an ED patient, but usage time increases, infection rates will likely increase
  • Will this line achieve the infusion rate you need? See this article on infusion rates of various IV catheters

 

The bottom line: the “easy IJ” is a rapid, effective and safe alternative to establish IV access in stable patients in whom peripheral and external jugular venous attempts have failed.

 

References

(1) Teismann NA, Knight RS, Rehrer M, Shah S, Nagdev A, Stone M. The ultrasound-guided “peripheral IJ”: internal jugular vein catheterization using a standard intravenous catheter. J Emerg Med 2013 Jan;44(1):150-154.

(2) Moayedi S, Witting M, Pirotte M. Safety and Efficacy of the “Easy Internal Jugular (IJ)”: An Approach to Difficult Intravenous Access. J Emerg Med 2016 Dec;51(6):636-642.

 

 

Continue Reading

EM Reflections – September 2017

Thanks to Dr Paul Page for leading the discussion

Edited by Dr David Lewis

Top tips from this month’s rounds:

  1. Non-specific Abdo pain – Appendicitis is always high on the differential 

  2. Intoxicated patients are at high risk for Head Injury

  3. Acute Heart Failure has a higher mortality than acute NSTEMI

  4. Enhancing Morbidity and Mortality Rounds Quality


Non-specific Abdo pain – Appendicitis is always high on the differential 

Does a normal white count exclude appendicitis?No – Clinicians should be wary of reliance on either elevated temperature or total WBC count as an indicator of the presence of appendicitis. The ROC curve suggests there is no value of total WBC count or temperature that has sufficient sensitivity and specificity to be of clinical value in the diagnosis of appendicitis. Acad Emerg Med. 2004 Oct;11(10):1021-7.Clinical value of the total white blood cell count and temperature in the evaluation of patients with suspected appendicitis.

Does a normal CRP exclude appendicitis?No – Acad Emerg Med. 2015 Sep;22(9):1015-24. doi: 10.1111/acem.12746. Epub 2015 Aug 20. Accuracy of White Blood Cell Count and C-reactive Protein Levels Related to Duration of Symptoms in Patients Suspected of Acute Appendicitis.

 

A useful review on the diagnosis of appendicitis – JAMA. 2007 Jul 25; 298(4): 438–451. Does This Child Have Appendicitis?

 

Summary of Accuracy of Symptoms

Download (PDF, 124KB)

Summary of Accuracy of Signs

Download (PDF, 117KB)

 

 

Finally – Don’t forget Emergency Physicians can learn how to use Point of Care Ultrasound (PoCUS – ?Appendicitis) which can significantly improve diagnostic accuracy in experienced hands. Experience comes with practice.

J Med Radiat Sci. 2016 Mar; 63(1): 59–66. Published online 2016 Jan 20. doi:  10.1002/jmrs.154
Ultrasound of paediatric appendicitis and its secondary sonographic signs: providing a more meaningful finding

See SJRHEM PoCUS Quick Reference

PoCUS – Measurements and Quick Reference

 


Intoxicated patients are at high risk for Head Injury

Intoxicated patients with minor head injury are at significant risk for intracranial injury, with 8% of intoxicated patients in our cohort suffering clinically important intracranial injuries. The Canadian CT Head Rule and National Emergency X-Radiography Utilization Study criteria did not have adequate sensitivity for detecting clinically significant intracranial injuries in a cohort of intoxicated patients.

ACADEMIC EMERGENCY MEDICINE 2013; 20:754–760. Traumatic Intracranial Injury in Intoxicated Patients With Minor Head Trauma

Canadian CT Head Rule not applicable to intoxicated patients (GCS<13)

Download (PDF, 76KB)

 

 

CMPA provide useful guidance on the duties expected in the management of intoxicated ED patients.

 

All intoxicated patients, even the so called ‘frequent fliers’ require a full assessment, including history (from 3rd parties if available), full examination (especially neurological), blood glucose level, neurological observations, and this assessment should be carefully documented.

 

Can we defer CT imaging for intoxicated patients presenting with possible brain injury?

This study suggests that deferring CT imaging while monitoring improving clinical status in alcohol-intoxicated patients with AMS and possible ICH is a safe ED practice. This practice follows the individual emergency physician’s comfort in waiting and will vary from one physician to another.

http://www.sciencedirect.com/science/article/pii/S0735675716306805

 

Download (PDF, 172KB)

 

 


Acute Heart Failure has a higher mortality than acute NSTEMI

Cardiac markers are routinely used to exclude NSTEMI in patient presenting with chest pain. However the diagnosis of acute heart failure (AHF) is mainly clinical, including CXR, ECG, PoCUS.

Ultrasound B Lines and Heart Failure

 

There is good evidence that BNP can be helpful in ruling out AHF – BMJ 2015;350:h910

Recommended Link – Emergency Medicine Cardiac Research and Education Group

Download (PDF, 1.32MB)

 

 

Emergency Treatment of Acute Congestive Heart Failure

Most recent recommendations from Canadian Cardiovascular Society (2012)

  • 1 – We recommend supplemental oxygen be considered for patients who are hypoxemic; titrated to an oxygen saturation > 90% (Strong Recommendation, Moderate-Quality Evidence).

Values and preferences. This recommendation places relatively higher value on the physiologic studies demonstrating potential harm with the use of excess oxygen in normoxic patients and less value on long-term clinical usage of supplemental oxygen without supportive data.

  • 2 – We recommend CPAP or BIPAP not be used routinely (Strong Recommendation, Moderate-Quality Evidence).

Values and preferences. This recommendation places high weight on RCT data with a demonstrated lack of efficacy and with safety concerns in routine use. Treatment with BIPAP/CPAP might be appropriate for patients with persistent hypoxia and pulmonary edema.

  • 3 – We recommend intravenous diuretics be given as first-line therapy for patients with congestion (Strong Recommendation, Moderate-Quality Evidence).
  • 4 – We recommend for patients requiring intravenous diuretic therapy, furosemide may be dosed intermittently (eg, twice daily) or as a continuous infusion (Strong Recommendation, Moderate-Quality Evidence).
  • 5 – We recommend the following intravenous vasodilators, titrated to systolic BP (SBP) > 100 mm Hg, for relief of dyspnea in hemodynamically stable patients (SBP > 100 mm Hg):
    • i

      Nitroglycerin (Strong Recommendation, Moderate-Quality Evidence);

    • ii

      Nesiritide (Weak Recommendation, High-Quality Evidence);

    • iii

      Nitroprusside (Weak Recommendation, Low-Quality Evidence).

Values and preferences. This recommendation places a high value on the relief of the symptom of dyspnea and less value on the lack of efficacy of vasodilators or diuretics to reduce hospitalization or mortality.

  • 6 – We recommend hemodynamically stable patients do not routinely receive inotropes like dobutamine, dopamine, or milrinone (Strong Recommendation, High-Quality Evidence).

Values and preferences. This recommendation for inotropes place high value on the potential harm demonstrated when systematically studied in clinical trials and less value on potential short term hemodynamic effects of inotropes.

  • 7 – We recommend continuation of chronic β-blocker therapy with AHF, unless the patient is symptomatic from hypotension or bradycardia (Strong Recommendation, Moderate-Quality Evidence).

Values and preferences. This recommendation places higher value on the RCT evidence of efficacy and safety to continue β-blockers, the ability of clinicians to use clinical judgement and lesser value on observational evidence for patients with AHF.

  • 8 – We recommend tolvaptan be considered for patients with symptomatic or severe hyponatremia (< 130 mmol/L) and persistent congestion despite standard therapy, to correct hyponatremia and the related symptoms (Weak Recommendation, Moderate-Quality Evidence).

Values and preferences. This recommendation places higher value on the correction of symptoms and complications related to hyponatremia and lesser value on the lack of efficacy of vasopressin antagonists to reduce HF-related hospitalizations or mortality.

 

Emergency Medicine Cases – Episode 4: Acute Congestive Heart Failure 

In Summary

  • AHF is a serious life-threatening condition in its own right, excluding NSTEMI does not change that. Appropriate management and disposition (almost always admission) is required.
  • Oxygen and intravenous Diuretics are the first-line  treatment
  • Nitrates are recommended in the relief of dyspnea in hemodynamically stable patients (SBP > 100 mm Hg)

 


Enhancing Morbidity and Mortality Rounds Quality

The Ottawa M&M Model

CalderMM-Rounds-Guide-2012

 

 

Continue Reading

RCP – Nar’ pump, mo’ problems

Nar’ pump, mo’ problems, a case on cardiogenic shock

Resident Clinical Pearl (RCP) – June 2017

Mandy Peach, R2 FMEM, Dalhousie University, Saint John, New Brunswick

Reviewed/Edited by Dr. David Lewis and Dr. Kavish Chandra

It’s 11 pm, you’re doing the overnight shift and EMS calls in to report a patient with an ETA of 3 minutes: “80 yo female, found on floor in apartment by husband after reportedly feeling unwell for 2 days. Decreased LOC but arousable and responding appropriately. BP 82/36, HR 120, RR 22, Afebrile, oxygen sat 86% on 6L nasal cannula.”

You hear the vitals, and many differentials run through your mind – PE, sepsis, hemorrhage, tamponade. Your main concerns are: this person needs more airway support and they are in shock, and when you think shock you think ‘fluids’.

EMS rolls in with your patient and she looks awful – pale, mottled extremities and drowsy. She is being re-assessed, RT is present to switch to a face mask, IV access is being established and you’re about to pound her with fluids when you are handed her ECG:

1https://lifeinthefastlane.com/ecg-library/basics/inferior-stemi/

This lady clearly is having an inferior STEMI – there is marked ST elevation in II, III and aVF with early Q wave formation.

 

Take home point #1: In any Inferior STEMI, you must suspect RV involvement

Look for ST elevation in V1 and depression in V2, or ST elevation in lead III > lead II. If these are present – get a 15 lead ECG.1

On closer look at our patient’s ECG there is ST elevation in V1-V2 and the elevation in lead III is indeed larger than lead II. You order the 15 lead.

2 https://lifeinthefastlane.com/ecg-library/right-ventricular-infarction/

Look for ST elevation in right sided leads V3-V6, but the money is on V4R – ST elevation in this lead has a sensitivity of 88%, specificity of 78% and diagnostic accuracy of 83% for RV infarction2. Our patient does have RV infarction seen by ST elevation in V4R.

 

Take home point #2: RV involvement is associated with increased risk of cardiogenic shock and death with a mortality of 50% within the first 48 hours3. If there is RV involvement, giving nitroglycerin for chest pain is CONTRAINDICATED

Due to a poorly functioning RV, patients are pre-load sensitive2. If you decrease the pre-load then they have even less to pump, further worsening the hypotension.

So we have diagnosed this lady with cardiogenic shock secondary to AMI (the most common cause of cardiac related shock) and we determined she has RV involvement. We know we can’t give her nitroglycerin. Let’s reassess her status – the basic ABC’s.

Airway & Breathing – the RT has since advanced her to a non-rebreather with a sat level in the high 80’s. You suggest trying Optiflow or BiPAP as a temporizing measure – this lady is going to need to be intubated.

 

Take home point #3: Positive pressure ventilation requires a stable, cooperative patient – which is often not the case in cardiogenic shock

Positive pressure can decrease pre-load and potentially worsen hypotension3. It is a temporizing measure only. The majority will require endotracheal intubation to maintain their saturation as their work of breathing is a large expenditure of energy.

You successfully complete a RSI and the saturation improves to 94-98%.

Circulation – Repeat BP is 82/36. You complete a cardiac point-of-care-ultrasound (PoCUS) and see poor contractility, but no pericardial effusion or large clots suggesting chordae or papillary rupture. IVC is > 50% collapsible.

 

Take home point #4: On PoCUS, heart failure caused by acute ischemia will show a large RV and small LV secondary to low filling pressures, which is best seen on the apical 4 chamber view3

Your patient continues to be hypotensive – you give a small 500 cc bolus; you don’t want to overload a poorly pumping heart with fluid it can’t handle. However you anticipate that this will not be enough to improve her BP, and as she continues to be hypotensive her myocardial ischemia worsens, which subsequently worsens her pump dysfunction in a vicious cycle. She needs pressure support.

 

Take home point #5: Cardiogenic shock requires vasopressor support

If systolic BP > 90: Start with dobutamine for inotropy. Double up on agents – likely will need to add a vasoconstrictor. Dopamine is usually the next to add.

If systolic BP < 90: Can still use dobutamine, but need to add norepinephrine for vasoconstriction. Dopamine alone will worsen BP as it is a vasodilator.

3Tintinalli’s Comprehensive Guide to Emergency Medicine.

You start dobutamine and dopamine peripherally with the intention of obtaining central venous assess once stabilized.

In the meantime, cardiac labs and portable CXR are pending, you treat this patient as any other STEMI in terms of dual anti-platelet and anti-coagulation loading.

 

Take home point #6: Do not give beta blockers

Do not give beta blockers in RV infarcts as high risk of bradycardia and AV block due to ischemia of the AV nodal artery3.

You consult cardiology to activate the cath lab.

 

Take home point #7: Early revascularization in ischemic related cardiogenic shock is key

Early revascularization has a long term mortality benefit, preferably if done within 6 hours4.  Catheterization or CABG is the preferred method over thrombolytic therapy.

You consult cardiology to activate the cath lab.

Back to our patient –

This lady did go on to the cath lab and had stenting of her RCA, however her infarct likely occurred > 48 hours before presentation. Unfortunately, despite aggressive vasopressor therapy and revascularization, she coded immediately after the procedure and resuscitation attempts were unsuccessful, emphasizing the poor prognosis associated with ischemia related cardiogenic shock.

 

Bottom line for cardiogenic shock: fluid bolus 500 cc 0.9% NaCl, vasopressor support and RSI. Early revascularization is key – catheterization is preferred. Despite these interventions, the diagnosis portends a poor prognosis.

 

References

  1. Inferior STEMI – Life in the Fast Lane https://lifeinthefastlane.com/ecg-library/basics/inferior-stemi/
  2. Right Ventricular Infarction – Life in the Fast Lane https://lifeinthefastlane.com/ecg-library/right-ventricular-infarction/
  3. Tintinalli, JE. (2016). Cardiogenic Shock (8th ed.) Tintinalli’s Emergency Medicine: A Comprehensive Study Guide (pages 349-352). New York: McGraw-Hill.
  4. Cardiogenic Shock – Literature Summary – Life in the Fast Lane https://lifeinthefastlane.com/ccc/cardiogenic-shock-literature-summaries/

 

This post was copyedited by Kavish Chandra @kavishpchandra

Continue Reading

RCP – The pee or not the pee: so many questions!

The pee or not the pee: so many questions!

Resident Clinical Pearl (RCP) – May 2017

Jacqueline MacKay, R3 FMEM, Dalhousie University, Saint John, New Brunswick

 

The case: 

A 16-month old girl with a history of fever of 39 degrees and slightly decreased oral intake for three days. She has no other symptoms of note and is a healthy, fully immunized child. Her vital signs are stable and her temperature is 37.9 after having some Advil at triage. After a careful head-to-toe examination, you note that she looks extremely well and you aren’t able identify a source for the infection.

 

Question:

Could this be a UTI? What investigations would be appropriate?

 


The overall prevalence of UTI in febrile infants age 2-24 months who have no apparent source for fever is 5%. There are some groups with higher than average risk of UTI and these groups can be identified. Additionally, the presence of another source of infection (based on clinical history and physical exam) reduces the likelihood of UTI by half.


 

Individual Risk Factors: Girls Individual Risk Factors: Boys

Caucasian race

Age < 12 months

Temperature 39 degrees or greater

Fever for 2 or more days

Absence of another source of infection

Nonblack race

Temperature 39 degrees or greater

Fever for 24 hours or more

Absence of another source of infection

 


 

In girls age 2-24 months:

  • 1 risk factor: probability of UTI 1% or less
  • 2 risk factors: probability of UTI 2% or less

 

In boys age 2-24months:

  • uncircumcised: probability of UTI exceeds 1% even in the absence of other risk factors
  • circumcised with 2 risk factors: probability of UTI 1% or less
  • circumcised with 3 risk factors: probability of UTI 2% or less

 

The probability of UTI increases with the addition of more risk factors, and some of the factors (such as fever duration) may change during the course of the illness, increasing the probability of UTI.

 

Approximately half of clinicians consider a more than 1% risk of UTI sufficient for further investigation and treatment if UTI is found, to prevent spread of infection and renal scarring.

 


 

Recommendations:

  1. If the clinician determines the febrile infant to have a low (<1%) likelihood of UTI, then clinical followup monitoring without testing is sufficient.
  2. If the clinician determines that the febrile infant is not in a low risk group (>1% risk) then there are two options: obtain a urine specimen through catheterization or suprapubic aspirate for urinalysis and culture; or to obtain a urine specimen through the most convenient means and perform a urinalysis. If the urinalysis suggests UTI (positive leukocyte esterase or nitrites, or microscopic bacteria or leukocytes), then a urine specimen should be obtained through catheterization or suprapubic aspirate.

 


 

Caveats:

  1. A negative urinalysis does NOT rule out UTI with certainty in children; however it is reasonable to monitor the clinical course without initiating antibiotics.
  2. Urine from a specimen bag CANNOT be used for culture to document UTI due to high risk of contamination.

 


 

Case conclusion:

A bag specimen was obtained for urinalysis, which was negative. After discussion with the parents, no antibiotics were prescribed and close followup was available. The child’s fever resolved within 24 hours. The urine culture was also subsequently negative.

 


Reference:

American Academy of Pediatrics, Subcommittee on Urinary Tract Infection, Steering Committee on Quality Improvement and Management; Roberts KB. Urinary tract infection: Clinical practice guideline for diagnosis and management of the initial UTI in febrile infants and children 2 to 24 months. Pediatrics 2011;128(

Continue Reading

PoCUS – Measurements and Quick Reference

Developed by Dr. Heather Flemming as part of her PG PoCUS Elective at SJRHEM.

A useful Point of Care Ultrasound (PoCUS) guide to common normal values, measurements, pathological values and quick reference tips. A pdf version is also provided in this post which can be downloaded, printed and attached to your ultrasound machine for easy access.

 

 

 


 


Download (PDF, 1017KB)

 

Continue Reading

RCP – Gravidology for the Emergency Physician

Gravidology for the Emergency Physician

Resident Clinical Pearl – April 2017

Luke Taylor, PGY1 iFMEM, Dalhousie University, Saint John, New Brunswick

Reviewed by Dr. David Lewis

 

 

Many adaptations take place in the gravid female, the end goal of each being to provide optimal growth for the fetus, as well as to protect the mother from the potential risks of labour and delivery. It is very important to understand these changes when assessing an unwell pregnant patient in the ED.


Vital Signs:

 

BP: Blood pressure falls earlier in pregnancy with nadir in second trimester (mean ~105/60 mmHg). In the third trimester BP increases and may reach pre pregnancy levels at term. BP is related to a reduction in SVR and multiple hormonal influences that are not fully understood.

 

HR: CO=HRxSV. The increase in CO is attributed mainly to the increase in circulating volume (30-50% above baseline). HR increases by 15-20 beats/min over non pregnant females.

*Supine position in the gravid female can lower CO by 20-30% due to a reduction in venous return which reduces stroke volume.

 

RR: State of relative hyperventilation. NO change in RR, however there is an increase in tidal volume resulting in a 50% increase in minute ventilation. Increased O2 consumption and demand with hypersensitivity to chances in CO2.

*60-70% of women experience a sensation of dyspnea during pregnancy

 

 


Diagnostic Imaging and ECG:

 

Must ensure imaging is necessary for management and explain risks well.

** 1 rad increases the risk of childhood malignancy by 1.5-2x above baseline.

 

CXR: Minimal changes to CXR in normal pregnancy but may have; prominence of the pulmonary vasculature and elevation of the diaphragm.

 

PoCUS: FAST doesn’t perform well in pregnant patient. Small amount of physiologic free fluid in the pelvis (posterior, lower portion of uterus), all else should be considered pathologic. Physiologic hydronephrosis and hydroureter (mostly R-sided).

 

CT-A: When required to r/o PE, capable of being completed at very low rad (below teratogen cut off, CT of 1-3rad is under the teratogenic cutoff of 5-10rad = 10,000 cxr or 10x CT chest

 

ECG: Various changes occur, may include ST and T wave changes, and presence of Q waves. The heart is rotated toward the left, resulting in a 15 to 20º left axis deviation. Marked variation in chamber volumes, especially left atrial enlargement. This can lead to stretching of the cardiac conduction pathways and predisposes to alterations in cardiac rhythm.

 

 


Routine Laboratory Tests:

 

CBC: Physiologic Anemia – Increased retention of Na and H2O (6-8L) leading to volume expansion combined with a slightly smaller increase in red cell mass.

Leukocytosis – Due to physiologic stress from the pregnancy itself, creates a new reference range from 9000, to as high as 25000 in healthy pregnant females (often predominately neutrophils)

 

PTT: Various processes result in 20% reduction of PTT and a hypercoagulable state (also helps to protect from hemorrhage during labour).

 

Urinalysis: Very common to have 1-3+ leukocytes, presence of blood, as well as ketones on point of care testing. Not considered pathologic unless Nitrite positive.

 

Creatinine: Pre-eclamptic patients may have a creatinine in the normal range, but have a drastic reduction in GFR (40%).

 

B-HCG: Every female of childbearing years should be considered to: Be pregnant, RH-, and have an ectopic until proven otherwise. Draw a beta HCG on every critically ill or injured women of childbearing years regardless of reported LMP.

 


ACLS:

 

Remember, most features are the same as when resuscitating a non-pregnant patient.

Some things to remember:

 

Higher risk of aspiration – Progesterone relaxes gastroesophageal sphincters and prolongs transit times throughout the intestinal tract. = Careful bag mask ventilation, do not overdo it.

Left uterine displacement (LUD)– While patient supine to provide best chest compressions possible

Medications and Dosages– Remain the same in pregnancy, vasopressors like epinephrine should still be used despite effect on uterus perfusion

Defibrillation OK-  Fetus is not effected by defibrillation, low risk of arc if fetal monitors in place, do not delay.

Four minute rule– For patients whose uterus is at or above the umbilicus, prepare for cesarean delivery if no ROSC by 4mins. ** In a case series of 38 perimortem cesarean delivery (PMCDs), 12 of 20 women for whom maternal outcome was recorded had ROSC immediately after delivery.

Etiology:  Must continue to think broadly, however common reasons for maternal cardiac arrest are: bleeding, heart failure, amniotic fluid embolism (AFE), and sepsis. Common maternal conditions that can lead to cardiac arrest are: preeclampsia/eclampsia, cerebrovascular events, complications from anesthesia, and thrombosis/thromboembolism.

 


REFERENCES

Cardiac Arrest in Pregnancy – A Scientific Statement From the American Heart Association

Up To Date – Respiratory Tract Changes in Pregnancy

Merk Manual – Physiology of Preganacy

https://radiopaedia.org/cases/chest-x-ray-in-normal-pregnancy

Continue Reading

SHoC blog from @CanadiEM

Social media site @CanadiEM recently featured the @CJEMonline @IFEM2 #SHoC Consensus Protocol, featuring authors from @SJRHEM among others.

So why do we need another ultrasound protocol in emergency medicine? RUSHing from the original FAST scan, playing the ACES, FOCUSing on the CAUSE and meeting our FATE, it may seem SHoCking that many of these scanning protocols are not based on disease incidence or data on their impact, but rather on expert opinion. The Sonography in Hypotension (SHoC) protocols were developed by an international group of critical care and emergency physicians, using a Delphi consensus process, based upon the actual incidence of sonographic pathology detected in previously published international prospective studies [Milne; Gaspari]. The protocols are formulated to help the clinician utilize ultrasound to confirm or exclude common causes, and guides them to consider core, supplementary and additional views, depending upon the likely cause specific to the case.

Why would I take the time to scan the aorta of a 22 year old female with hypotension, when looking for pelvic free fluid might be more appropriate? Why would I not look for lung sliding, or B lines in a breathless shocked patient? Consideration of the shock category by addressing the “4 Fs” (fluid, form, function, and filling) will provide a sense of the best initial therapy and should help guide other investigations. Differentiating cardiogenic shock (a poorly contracting, enlarged heart, widespread lung B lines, and an engorged IVC) in an elderly hypotensive breathless patient, from sepsis (a vigorously contracting, normally sized or small heart, focal or no B lines, and an empty IVC) will change the initial resuscitation plan dramatically. Differentiating cardiac tamponade from tension pneumothorax in apparent obstructive shock or cardiac arrest will lead to dramatically differing interventions.

SHoC guides the clinician towards the more likely positive findings found in hypotensive patients and during cardiac arrest, while providing flexibility to tailor other windows to the questions the clinician needs to answer. One side does not fit all. That is hardly SHoCing news. Prospective validation of ultrasound protocols is necessary, and I look forward to future analysis of the effectiveness of these protocols.

References

Scalea TM, Rodriguez A, Chiu WC, et al. Focused Assessment with Sonography for Trauma (FAST): results from an inter- national consensus conference. J Trauma 1999;46:466-72.

Labovitz AJ, Noble VE, Bierig M, Goldstein SA, Jones R, Kort S, Porter TR, Spencer KT, Tayal VS, Wei K. Focused cardiac ultrasound in the emergent setting: a consensus statement of the American Society of Echocardiography and American College of Emergency Physicians. Journal of the American Society of Echocardiography. 2010 Dec 31;23(12):1225-30.

Hernandez C, Shuler K, Hannan H, Sonyika C, Likourezos A, Marshall J. C.A.U.S.E.: cardiac arrest ultra-sound exam – a better approach to managing patients in primary non-arrhythmogenic cardiac arrest. Resuscitation 2008;76:198–206

Atkinson PR, McAuley DJ, Kendall RJ, et al. Abdominal and Cardiac Evaluation with Sonography in Shock (ACES): an approach by emergency physicians for the use of ultrasound in patients with undifferentiated hypotension. Emerg Med J 2009;26:87–91

Perera P, Mailhot T, Riley D, Mandavia D. The RUSH exam: Rapid Ultrasound in Shock in the evaluation of the critically lll. Emerg Med Clin North Am 2010;28:29 – 56

Jensen MB, Sloth E, Larsen KM, Schmidt MB: Transthoracic echocardiography for cardiopulmonary monitoring in intensive care. Eur J Anaesthesiol. 2004, 21: 700-707.

Gaspari R, Weekes A, Adhikari S, Noble VE, Nomura JT, Theodoro D, Woo M, Atkinson P, Blehar D, Brown SM, Caffery T. Emergency department point-of-care ultrasound in out-of-hospital and in-ED cardiac arrest. Resuscitation. 2016 Dec 31;109:33-9.

Milne J, Atkinson P, Lewis D, et al. (April 08, 2016) Sonography in Hypotension and Cardiac Arrest (SHoC): Rates of Abnormal Findings in Undifferentiated Hypotension and During Cardiac Arrest as a Basis for Consensus on a Hierarchical Point of Care Ultrasound Protocol. Cureus 8(4): e564. doi:10.7759/cureus.564

Sonography in Hypotension and Cardiac Arrest: The SHoC Consensus Statement

Continue Reading

RCP – The Pregnant ED Patient – A Compendium of Pearls

The Pregnant ED Patient – A Compendium of Pearls

Resident Clinical Pearl (RCP) – April 2017

Luke Taylor, R1 FMEM, Dalhousie University, Saint John, New Brunswick

Reviewed/Edited by Dr. David Lewis

 

 


Many adaptations take place in the gravid female, the end goal of each being to provide optimal growth for the fetus, as well as to protect the mother from the potential risks of labour and delivery.

 

It is very important to understand these changes when assessing an unwell pregnant patient. For example, a hemorrhaging patient may not show the typical signs and symptoms of tachycardia and hypotension until much later.

 

 


Vitals:

 

BP: Blood pressure falls earlier in pregnancy with nadir in second trimester (mean ~105/60 mmHg). Third trimester BP increases and may reach pre pregnancy levels at term.

Brought on by a reduction in SVR and multiple hormonal influences not fully understood.

 

HR: CO=HRxSV. The increase in CO is attributed mainly to the increase in circulating volume (30-50% above baseline). HR increases by 15-20 beats/min over non pregnant females.

*Supine position in the gravid female can lower CO by 20-30%

 

RR: State of relative hyperventilation. NO change in RR, however there is an increase in tidal volume resulting in a 50% increase in minute ventilation. Increased O2 consumption and demand with hypersensitivity to changes in CO2.

*60-70% of women experience a sensation of dyspnea during pregnancy


 


Imaging and ECG:

 

Must ensure imaging is necessary for management and explain risks well.

** 1 rad increases the risk of childhood malignancy by 1.5-2x above baseline.

 

CXR: Minimal changes to CXR in normal pregnancy but may have; prominence of the pulmonary vasculature and elevation of the diaphragm.

 

PoCUS: FAST doesn’t perform well in pregnant patient. Small amount of physiologic free fluid in the pelvis (posterior, lower portion of uterus), all else should be considered pathologic. Physiologic hydronephrosis and hydroureter (mostly R-sided).

 

CT-A: When required to rule out PE, capable of being completed at very low rad (below teratogen cut off, CT of 1-3rad is under the teratogenic cutoff of 5-10rad = 10,000 cxr or 10x CT chest

 

ECG: Various changes occur, may include ST and T wave changes, and presence of Q waves. The heart is rotated toward the left, resulting in a 15 to 20º left axis deviation. Marked variation in chamber volumes, especially left atrial enlargement. This can lead to stretching of the cardiac conduction pathways and predisposes to alterations in cardiac rhythm.

 


Routine Laboratory Tests:

 

CBC: Physiologic Anemia – Increased retention of Na and H2O (6-8L) leading to volume expansion combined with a slightly smaller increase in red cell mass.

Leukocytosis – Due to physiologic stress from the pregnancy itself, creates a new reference range from 9000, to as high as 25000 in healthy pregnant females (often predominately neutrophils)

 

PTT: Various processes result in 20% reduction of PTT and a hypercoagulable state (also helps to protect from hemorrhage during labour).

 

Urinalysis: Very common to have 1-3+ leukocytes, presence of blood, as well as ketones on point of care testing. Not considered pathologic unless Nitrite positive.

 

Creatinine: Pre-eclamptic patients may have a creatinine in the normal range, but have a drastic reduction in GFR (40%).

 

B-HCG: Every female of childbearing years should be considered to: Be pregnant, RH-, and have an ectopic. Studies show that 7-15% of women who (in the ED) state it is “Impossible” they are pregnant, end up being. Draw a beta HCG on every women of childbearing years regardless of LMP.

 


ACLS

 

Remember, most features are the same as when resuscitating a non-pregnant patient.

Some things to remember:

 

Higher risk of aspiration – Progesterone relaxes gastroesophageal sphincters and prolongs transit times throughout the intestinal tract. = Careful bag mask ventilation, do not overdo it.

Left uterine displacement (LUD)– While patient supine to provide best chest compressions possible

Medications and Dosages– Remain the same in pregnancy, vasopressors like epinephrine should still be used despite effect on uterus perfusion

Defibrillation OK–  Fetus is not effected by defibrillation, low risk of arc if fetal monitors in place, do not delay.

Four minute rule– For patients whose uterus is at or above the umbilicus, prepare for cesarean delivery if no ROSC by 4mins. ** In a case series of 38 perimortem cesarean delivery (PMCDs), 12 of 20 women for whom maternal outcome was recorded had ROSC immediately after delivery.

Etiology:  Must continue to think broadly, however common reasons for maternal cardiac arrest are: bleeding, heart failure, amniotic fluid embolism (AFE), and sepsis. Common maternal conditions that can lead to cardiac arrest are: preeclampsia/eclampsia, cerebrovascular events, complications from anesthesia, and thrombosis/thromboembolism.

 


References

http://circ.ahajournals.org/content/132/18/1747/tab-supplemental

https://www.uptodate.com/contents/respiratory-tract-changes-during-pregnancy?source=search_result&search=pregnancy%20respiratory&selectedTitle=1~150

https://www.merckmanuals.com/en-ca/professional/gynecology-and-obstetrics/approach-to-the-pregnant-woman-and-prenatal-care/physiology-of-pregnancy

https://radiopaedia.org/cases/chest-x-ray-in-normal-pregnancy

Continue Reading

CAEP Definition of an Emergency Physician and the Importance of Emergency Medicine Certification

CAEP Definition of an Emergency Physician

An emergency physician is a physician who is engaged in the practice of emergency medicine and demonstrates the specific set of required competencies that define this field of medical practice. The accepted route to demonstration of competence in medicine in Canada is through certification by a recognized certifying body.*

CAEP recognizes that historically many of its members are physicians who have practiced emergency medicine without formal training and certification. Many have been, and continue to be key contributors to developing emergency medicine and staffing emergency departments in Canada. CAEP acknowledges the contributions of these valued physicians and recognizes them as emergency physicians. It is CAEP’s vision going forward that physicians entering emergency practise will demonstrate their competencies by obtaining certification.

* Recognized certifying bodies in Canada are:
The Royal College of Physicians & Surgeons of Canada
The College of Family Physicians of Canada
(Emergency Physicians with equivalent non-Canadian training and certification are also recognized in Canada eg The American Board of Emergency Medicine)

CAEP Statement on the Importance of Emergency Medicine Certification in Canada

It is CAEP’s vision, that by 2020 all emergency physicians in Canada will be certified in emergency medicine by a recognized certifying body.*

Toward that vision, provincial governments and Faculties of Medicine must urgently allocate resources to increase the numbers of emergency medicine postgraduate positions in recognized training programs so the Colleges are able to address the gap in human resources and training. Furthermore, physicians who have historically practiced emergency medicine without certification must be supported in their efforts to become certified. CAEP is committed to facilitate this process by cataloguing and nationally coordinating practice- and practitioner-friendly educational continuing professional development programs designed to assist non-certified physicians to be successful in their efforts.

* Recognized certifying bodies in Canada are:
The Royal College of Physicians & Surgeons of Canada
The College of Family Physicians of Canada
(Emergency physicians with equivalent non-Canadian training and certification are also recognized in Canada eg The American Board of Emergency Medicine)

We have also published on this topic, highlighting the need for more resident positions in New Brunswick and PEI. Read our paper here.

 

Read more from CAEP here.

 

Continue Reading