Lung PoCUS – Podcast

Lung PoCUS in Pediatric Emergency Medicine – Podcast

PoCUS Fellowship Clinical Pearl (RCP) May 2020

Dr. Mandy Peach (Emergency Physician and Dalhousie PoCUS Fellow, Saint John, NB, Canada)

Reviewed by Dr. David Lewis

 


Extract:

“My name is Mandy Peach and I am Emergency Physician at the Saint John Regional Hospital in Saint John, New Brunswick. I’m currently completing a PoCUS Fellowship and a pediatric rotation through the IWK Emergency Department in Halifax…….

What is the evidence for the use of PoCUS and diagnosing pediatric pneumonia. Well trained PoCUS Physicians can identify pneumonia with a sensitivity of 89% and a specificity of 94%, compared community-acquired pneumonia chest x-ray has a sensitivity of 69% and a specificity of 100%, if you see it great…. but what about early bacterial pneumonia and this case PoCUS has the upper hand, and if you consider consolidations behind the heart that can be visualized on PoCUS and obscured on chest x-ray – PoCUS 2  chest x-ray zero. So clearly it’s a useful tool to have when trying to differentiate between bacterial pneumonia that requires treatment and viral causes that would indicate conservative management. So how do we actually ultrasound the lungs…..the first step is to make the kid comfortable scan them in a position of comfort for example and their parents arms what the patient touch the ultrasound gel or the probe so it’s less of a scary thing maybe play their favourite music or YouTube video on the background or give them their favourite or snack do you want to choose a high frequency linear probe and scanning the longitudinal plane ……….”

 

Listen to the Podcast for some useful tips on performing and interpreting lung ultrasound in the pediatric population.

Continue Reading

PoCUS in COVID

Point of Care Ultrasound (PoCUS) during the Covid-19 pandemic – Is this point of care tool more efficacious than standard imaging?

Resident Clinical Pearl (RCP) May 2020

Dr. Colin Rouse– (PGY-3  CCFP Emergency Medicine) | Dalhousie University

and Dr. Sultan Alrobaian (Dalhousie PoCUS Fellow, Saint John, NB, Canada)

Reviewed by Dr. David Lewis

 


Case

A 70 year of woman present to the ED with a history of fever, cough and dyspnoea. After a full clinical assessment (with appropriate PPE), Lung PoCUS is performed.


Introduction

The Covid-19 Pandemic has created the largest international public health crisis in decades. It has fundamentally changed both societal norms and health care delivery worldwide. Changes have been implemented into resuscitation protocols including ACLS to prioritise appropriate donning of personal protective equipment (PPE) and consideration of resuscitation appropriateness prior to patient contact.1 Equipment has been removed from rooms to limit cross-contamination between patients. In this Pearl we will explore why PoCUS should not be discarded as an unnecessary tool and should be strongly considered in the assessment of a potential Covid Patient.

Disclaimer: Given the novel nature of CoVid-19 there is a lack of RCT data to support the use of PoCUS. These recommendations are based solely on expert opinion and case reports until superior evidence becomes available.


Potential Benefits of PoCUS

  • Lung PoCUS has increased sensitivity compared to conventional lung X-ray for known lung pathologies such as CHF4 and Pneumonia5 with similar specificities. Given that Pneumonia is the most common complication of Covid-19 it may help diagnose this complication in patients who have a normal CXR.
  • PoCUS can be performed by the assessing physician limiting the unnecessary exposure to other health care providers such and Radiologic Technologists and other staff in the diagnostic imaging department.
  • Lung PoCUS is low cost, repeatable and available in rural settings
  • Once pneumonia is diagnosed other potential complications can be sought including VTE and cardiovascular complications.

The assessment of the potential Covid-19 patient.

First one must consider the potential risk for coronavirus transmission at each patient encounter and ensure proper PPE2 for both oneself and the PoCUS device3.


Lung Ultrasound in the potential Covid-19 Patient

Technique

  • Appropriate level PPE
  • A low-frequency (3–5 MHz) curvilinear transducer
  • Set Focus to Pleural Line and turn off machine filters (e.g THI) to maximize artifacts
  • Scanning should be completed in a 12-zone assessment6
    • 2 anterior windows
    • 2 lateral windows
    • 2 posterior windows

Findings7

Mild Disease

  • Focal Patchy B-lines in early disease/mild infection (May have normal CXR at this point)
  • Areas of normal lung

 

Moderate/Severe Disease – Findings of bilateral Pneumonitis

  • B-lines begin to coalesce (waterfall sign)
  • Thickened and irregular pleura
  • Subpleural Hypoechoic consolidation      +/- air bronchograms

 

Other Covid-19 Pearls

  • Large/Moderate Pleural Effusion rarely seen in Covid-19 (consider another diagnosis) – Small peripleural effusions are common in COVID
  • The virus has a propensity for the base of the posterior lung windows and it imperative to include these views in your assessment.


Example COVID PoCUS Videos8

Confluent B Lines and small sub pleural consolidation

 

Patchy B lines and Irregular pleura

 

Irregular pleura

 

Air Bronchogram


CT & ultrasonographic features of COVID-19 pneumonia9

It has been noted that lung abnormalities may develop before clinical manifestations and nucleic acid detection with some experts recommending early Chest CT for screening suspected patients.10 Obviously there are challenges with this recommendation mainly regarding feasibility and infection control. A group of researchers in China compared Ultrasound and CT findings in 20 patients with COVID-19. Their findings are summarized in the table below:

Their conclusion was that ultrasound has a major utility for management of COVID-19 due to its safety, repeatability, absence of radiation, low cost and point of care use. CT can be reserved for patients with a clinical question not answered by PoCUS. CT is required to assess for pneumonia that does not extend to the pleura. Scatter artifact from aerated lung obscures visualization of deep lung pathology with PoCUS. When PoCUS is sufficient it can be used to assess disease severity at presentation, track disease evolution, monitor lung recruitment maneuvers and prone positioning and guide decisions related to weaning of mechanical ventilation.


Learning Points

  • Lung PoCUS is helpful in the initial assessment of the suspected or known COVID19 Patient
  • Lung PoCUS may reveal pathology not visible on CXR
  • Lung PoCUS can provide insight into COVID19 disease severity
  • Lung PoCUS is a useful tool to track disease progression in COVID19

Lung PoCUS in COVID Deep Dive

Deep Dive Lung PoCUS – COVID 19 Pandemic

 

 


References

  1. Edelson, D. P., Sasson, C., Chan, P. S., Atkins, D. L., Aziz, K., Becker, L. B., … & Escobedo, M. (2020). Interim Guidance for Basic and Advanced Life Support in Adults, Children, and Neonates With Suspected or Confirmed COVID-19: From the Emergency Cardiovascular Care Committee and Get With the Guidelines®-Resuscitation Adult and Pediatric Task Forces of the American Heart Association in Collaboration with the American Academy of Pediatrics, American Association for Respiratory Care, American College of Emergency Physicians, The Society of Critical Care Anesthesiologists, and American Society of …. Circulation.
  2. COVID-19 – Infection Protection and Control. http://sjrhem.ca/covid-19-infection-protection-and-control/
  3. Johri, A. M., Galen, B., Kirkpatrick, J. N., Lanspa, M., Mulvagh, S., & Thamman, R. (2020). ASE Statement on Point-of-Care Ultrasound (POCUS) During the 2019 Novel Coronavirus Pandemic. Journal of the American Society of Echocardiography.
  4. Maw, A. M., Hassanin, A., Ho, P. M., McInnes, M., Moss, A., Juarez-Colunga, E., Soni, N. J., Miglioranza, M. H., Platz, E., DeSanto, K., Sertich, A. P., Salame, G., & Daugherty, S. L. (2019). Diagnostic Accuracy of Point-of-Care Lung Ultrasonography and Chest Radiography in Adults With Symptoms Suggestive of Acute Decompensated Heart Failure: A Systematic Review and Meta-analysis. JAMA network open, 2(3), e190703. https://doi.org/10.1001/jamanetworkopen.2019.0703
  5. Balk, D. S., Lee, C., Schafer, J., Welwarth, J., Hardin, J., Novack, V., … & Hoffmann, B. (2018). Lung ultrasound compared to chest X‐ray for diagnosis of pediatric pneumonia: A meta‐analysis. Pediatric pulmonology, 53(8), 1130-1139.
  6. Wurster, C., Turner, J., Kim, D., Woo, M., Robichaud, L. CAEP. COVID-19 Town Hall April 15: Hot Topics in POCUS and COVID-19. https://caep.ca/covid-19-town-hall-april-15-hot-topics-in-pocus-and-covid-19/
  7. Riscinti, M. Macias, M., Scheel, T., Khalil, P., Toney, A., Thiessen, M., Kendell, J. Denver Health Ultrasound Card. http://www.thepocusatlas.com/covid19
  8. Images obtained from. Ultrasound in COVID-19. The PoCUS Atlas. http://www.thepocusatlas.com/covid19
  9. Peng, Q., Wang, X. & Zhang, L. Findings of lung ultrasonography of novel corona virus pneumonia during the 2019–2020 epidemic. Intensive Care Med (2020). https://doi.org/10.1007/s00134-020-05996-6
  10. National Health Commission of the people’s Republic of China. Diagnosis and treatment of novel coronavirus pneumonia (trial, the fifth version)[EB/OL]. (2020-02-05)[2020-02-06]. http://www.nhc.gov.cn/yzygj/s7653p/202002/3b09b894ac9b4204a79db5b8912d4440.shtml
Continue Reading

Deep Dive Lung PoCUS – COVID 19 Pandemic

SJRHEM Weekly COVID-19 Rounds – May 2020

Dr. David Lewis


 

 

Part One covers aspects of core and advanced aspects of lung ultrasound application including: Zones, Technique, and Artifacts

Part Two covers PoCUS in COVID, the recent research, PoCUS findings, Infection Protection and Control, Indications and Pathways.


Part 1

 


Part 2

 

Continue Reading

Whose Line is it Anyway? – PoCUS in a Patient with Dyspnea

Medical Student Clinical Pearl – March 2020

Nguyet (Na) Nguyen

MD Class of 2021
Memorial University of Newfoundland

Reviewed and Edited by Dr. David Lewis

All case histories are illustrative and not based on any individual


 

Case Report

ID: 60 y/o M with dyspnea presenting to the ED late evening

HPI: Patient complained of increasing SOB starting the morning on day of presentation, with a worsening 3 days of non-productive cough. No chest pain or other cardiac features. No complaint suggestive of URTI or GI illness. Patient was given Atrovent and Ventolin en route by EMS, and was allegedly moving more air into his lungs after this intervention. Patient reports no ankle swelling, paroxysmal nocturnal dyspnea, but reports using 2 pillows to elevate himself when sleeping. Patient reports no fever, unexplained weight loss or fatigue.

Past medical history includes chronic back pain, DM, atrial fibrillation, peripheral DM-related ulcers, chronic kidney disease, BPH, colon cancer with hepatic metastases. Past surgical history significant for 5x CABG, liver and colon resection.

His medications are amitriptyline 10mg PO qhs, acetaminophen 650mg PO BID, dutasteride 0.5mg PO daily, ferrous sulfate 300mg PO daily, furosemide 40mg PO BID, metformin 500mg BID, pantoprazole 40mg PO BID, pregabalin 150mg PO BID, primidone 125mg PO daily, rosuvastatin 40mg PO qhs, rivaroxaban 15mg PO daily.

He has a distant 10 pack-years smoking history, drinks alcohol occasionally, and does not use recreational drugs. The patient lives with his wife in their own home.

Physical exam: Patient was markedly pale, non-diaphoretic, in tripod position with increased work of breathing. His temperature was 36.9, regular pulse rate at 105, respiratory rate 22, oxygen saturation 90% on room air and a nebulizer mask through which he was receiving aerosolized Atrovent and Ventolin. His BP was 125/78mmHg.

Cardiovascular exam revealed distant S1S2 in a chest with no visible deformity. His JVD was at the level of the sternal angle, there was no pedal edema bilateral. Capillary refill was 3 seconds bilateral at the thumbs. Percussion revealed no focal dullness, however on auscultation, basal crackles were heard more prominently in the right lung base, though also present on the left. There were also wheezes noted in the upper lobes heard in the anterior chest. Abdomen was soft, non-distended, non-tender. Neurological exam unremarkable.

Investigations: ECG showed sinus tachycardia with a LBBB, bloods drawn for routine labs, VBG, lactate, CXR ordered.

Differential diagnosis: AECOPD vs congestive heart failure.

PoCUS (Arrival Time + 10 mins): B-lines were observed in both lungs when a curvilinear probe was placed over different areas of the anterior chest. A small pleural effusion was also noted at the bottom of the right lung. B-lines represent increased fluid in an area of the lung, and given different clinical contexts maye represent pulmonary edema, pneumonia, or pulmonary contusion. In this case the most likely explanation for bilateral diffuse B-Lines is CHF and Pulmonary Edema. 

Working Diagnosis (Arrival Time + 10 mins): CHF and Pulmonary Edema

Management (Arrival Time + 15 mins): Pending transfer fo CXR and results of investigations the patient was treated with intravenous diuretics. He passed 500mls of urine and his symptoms improved considerably.

 

Investigations Results (Arrival Time + 45 mins): leukocytes 6.4, hemoglobin 83, platelet 165, sodium 140, potassium 5/0, chloride 101, creatinine 120, urea 11.7, glucose 17.0. Venous blood gas showed pH 7.31, pCO2 555, HCO3- 28 and lactate 2.7.

CXR (Arrival Time + 45 mins):

CXR was similar to above, this image is from: https://radiopaedia.org/cases/acute-pulmonary-oedema-6

 

Final impression: Congestive heart failure


What are B Lines?

These are the ultrasound equivalent of Kerley-B lines often reported on chest X-ray, which indicate edema in the lungs. For an exam to be positive (i.e indicative of pathology), one needs to see a minimum of 3 B-lines per view. B-lines look like flashlight beams traveling undisrupted down the entire ultrasound screen, as seen in the images above obtained during the exam.

These need to be distinguished from other artifacts such as ‘A-lines’ and ‘comet tails’. A-lines are seen in normal lungs. These are ‘repetitive reverberation’ artifacts of the normal pleura in motion. (Figure 1)(1)

‘Comet tails’- reported first by Lichenstein et al. in 1998 (although he was describing B-Lines in this paper) (Figure 2) (1), are ‘short, hypoechoic artifacts’ that only descend vertically partially down the screen. These are normal lung artifacts. This paper explains “a common misunderstanding in lung ultrasound” nomenclature that stems from Lichtenstein’s original paper.

Download pdf

 

From: https://www.mdedge.com/emergencymedicine/article/96697/imaging/emergency- ultrasound-lung-assessment

 


More on Comet Tails Artifact in this post from LitFL:

Comet tail artefact

 


 

Protocols

There are multiple protocols that guide the ultrasound technique (4) , some of which are:

  • Lichenstein et al (1998): longitudinal scans of anterior and lateral chest walls of patients in semi- recumbent position. Positive test defined as bilateral multiple B-lines diffuse anterolateral or lateral. The protocol had reported sensitivity (true positive) of 100%, and specificity (true negative) 92% for cardiogenic pulmonary edema. Blue Protocol (2015)
  • Liteplo et al (2008): anterior and lateral chest walls with patient supine: each chest divided into 4 zones (anterior, lateral, upper and lower). Positive test: pathologic pattern found in >1 zone on each side, with both sides involved.
  • Volpicelli et al. (2008): longitudinal scans of supine patients with chest divided into 11 areas (3 anterior R, 3 lateral R, 2 anterior L, 3 lateral L) to obtain score 0-11. Scores strongly correlated with radiologic and BNP (lab marker of CHF) at presentation.

 

 


 

What is the Evidence?

Al Deeb et al. conducted a systematic review and analysis of prospective cohort and prospective case-control studies in the ED, IDU, inpatient wards and prehospital settings (n = 1075). This was published in Acad Emerg Med (2014), which reported a sensitivity of 94.1% for using B-lines to diagnosis acute cardiogenic pulmonary edema (ACPE), and a specificity of 92.4% for patients with a moderate- high pretest probability for ACPE.

The SIMEU Multicenter study reported in 2015 reported a significantly higher accuracy (97% sensitivity and 97.4% specificity) with an approach incorporating lung ultrasound (LUS) in differentiating acute decompensated heart failure (ADHF) and non-cardiac causes of acute dyspnea, compared to approaches using the initial clinical workup (past medical history, history of presenting illness, physical examination, ECG, ABG), chest X-ray alone and natriuretic peptides.

Martindale et al. reported in 2016 (Academic Emergency Medicine) high positive likelihood ratio of pulmonary edema observed on lung ultrasound and low negative likelihood ratio of B-line pattern on lung US in affirming the presence of acute heart failure, after a systematic review and analysis of 57 prospective and cross-sectional studies (n = 1,918).

A useful Systematic Review “Emergency department ultrasound for the detection of B-lines in the early diagnosis of acute decompensated heart failure: a systematic review and meta-analysis ” from McGivery et al from SJRHEM (7), was published in 2018.


 

Learning Point

For a patient presenting to the ER with dyspnea, using PoCUS to observe 3 or more B-lines in two bilateral lung zones +/- pleural effusion can rapidly guide an accurate diagnosis of acute congestive heart failure.


 

References

  1. Taylor, T., Meer, J., Beck, S. Emerg Med. (2015) https://www.mdedge.com/emergencymedicine/article/96697/imaging/emergency- ultrasound-lung-assessment Last accessed Feb 29, 2020
  2. Lee, FCY, Jenssen, C., Dietrich, CF Med Ultrason (2018); 20(3): 379-384
  3. Ang SH. & Andrus P Curr Cardiol Rev. 2012 May; 8(2): 123-136https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3406272/
  4. Al. Deeb M., Barbic S., Featherstone R., Dankoff J., Barbic D. Acad Emerg Med 2014 Aug; 21(8): 843-52 https://www.ncbi.nlm.nih.gov/pubmed/25176151
  5. Pivetta E et al. Chest. 2015 Jul; 148(1): 202-210 https://www.ncbi.nlm.nih.gov/m/pubmed/25654562/
  6. Martindale JL, Wakai A, Collins SP, Levy PD, Diercks D, Hiestand BC, Fermann GJ, deSouza I, Sinert R, Acad Emerg Med. 2016 Mar; 23(3): 223-242 https://www.ncbi.nlm.nih.gov/pubmed/26910112
  7. McGivery K, Atkinson P, Lewis D, et al. Emergency department ultrasound for the detection of B-lines in the early diagnosis of acute decompensated heart failure: a systematic review and meta-analysis. CJEM. 2018;20(3):343‐352. doi:10.1017/cem.2018.27

 

Continue Reading

Introduction to Transesophageal Echo – Basic Technique

Thanks to Dr. Jennifer Cloutier, Cardiac Anesthesiologist, for delivering a great session.


This beginner guide is designed for those familiar with transthoracic echo and just starting to use TEE. ED indications and TEE utility in the emergency setting are briefly discussed at the end of this post.


Requirements

  • Sterile transducer – This requires a sterilization facility, protocol and collaboration with other departments
  • Patient preparation – In ED usually intubated, unconscious or sedated.
  • Optional – spray the transducer with topical local anesthetic

Contraindications

  • Suspected esophageal perforation, stricture or trauma
  • Varices

Insertion

  • Hold transducer control module with left hand and support against your abdomen (see pic 1)
  • Extend transducer to full length, holding end with right hand
  • Check the control wheels are functioning correctly before inserting the transducer
  • Ensure transducer head is facing upwards (use anterior length markings to maintain orientation)
  • Insert transducer on left side of tongue
  • Use bite guard – e.g cut corrugated airway tubing
  • Advance to mid esophagus
  • Look for left atrium – this is the first window

 

Orientation

The transducer can be manipulated into several orientations:

  • Rotate control module clockwise to orientate to patient right
  • Rotate control module anticlockwise to orientate to patient left
  • Rotate “Big Wheel” clockwise to antiflex and orientate anteriorly
  • Rotate “Big Wheel” anticlockwise to retroflex and orientate posteriorly
  • Rotate “Small Wheel” clockwise to flex right
  • Rotate “Small Wheel” anticlockwise to flex left
  • Advance transducer deeper into esophagus
  • Withdraw transducer less deeply in esophagus

(a) Advance, withdraw: Pushing or pulling the tip of the TEE probe; (b) turn to right, turn to left (also referred as clockwise and anticlockwise): rotating the anterior aspect of the TEE probe to the right or left of the patient; (c) anteflex, retroflex: anteflex is flexing the tip of the TEE probe anteriorly by turning the large control wheel clockwise. Retroflex is flexing the tip of the TEE probe posteriorly by turning the large wheel anticlockwise; (d) Flex to right, Flex to left: flexing the tip of the TEE probe with the small control wheel to the patient’s right or left. The probe flexion to the right and left may not be necessary and should be avoided to minimize trauma to the esophagus 

 

 

Multiplane Imaging Angle

With all modern TEE transducers the transducer beam can be rotated within the probe to generate different beam angles. This is achieved using 2 buttons on the control module, one button rotates from 0 to 180 degrees, the other button rotates it back from 180 to 0 degrees. Using the buttons in combination any desired angle between 0 and 180 degrees can be achieved.

At 0 degrees the transducer beam is transverse (orientated Left screen – Right patient)

At 90 degrees the transducer beam is longitudinal

At 180 degrees the transducer beam is transverse (orientated Left screen – Left patient)

 

Multiplane Imaging angle is depicted on the monitor using a pictogram dial.

In this example the TEE probe is located in the Mid Esophageal location. View A – the multiplane imaging angle is 10 degrees and a 4 chamber view is generated. View B – the multiplane imaging angle is 90 degrees and a 2 chamber view is generated.

 

 


 

Useful video tutorial explaining orientation

 

 


 

Core Views

For the beginner, standard views can be achieved by using a guide that shows the location of the transducer (e.g Mid Esophageal, Trans-Gastric along with the optimal multiplane angle (see below).

Clearly every patient will have slightly different anatomy and cardiac axis, so these guides are just a starting point. Fine tuning of all the above will be required.

The Consensus Statement of the American Society of Echocardiography and the Society of Cardiovascular Anesthesiologists provides an excellent outline of the basic perioperative TEE examination. Although this examination is likely to be much more comprehensive than what is needed in the Emergency Department (e.g during a code or peri arrest), it provides a useful guide to practicing all the important views that may be required in most situations.

 


 

This short video tutorial provides a useful outline of core views

 


ME 4 Chamber View


 

Indications

  • Cardiac Arrest – continuous echo evaluation of cardiac contractility, without impacting chest compression
  • Peri Arrest – assists with diagnosis and fluid resuscitation,
  • Undifferentiated Hypotension – assists with diagnosis and fluid resuscitation

US Probe: Transesophageal Echocardiography in Cardiac Arrest

The post above and the article below provide a more detailed discussion on the use of TEE in cardiac arrest.

New Concepts of Ultrasound in the Emergency Department: Focused Cardiac Ultrasound in Cardiac Arrest

 

 


References

Reeves ST, Finley AC, Skubas NJ, et al. Basic perioperative transesophageal echocardiography examination: a consensus statement of the American Society of Echocardiography and the Society of Cardiovascular Anesthesiologists. J Am Soc Echocardiogr. 2013;26(5):443–456. doi:10.1016/j.echo.2013.02.015

Arntfield, Robert et al. Focused Transesophageal Echocardiography by Emergency Physicians is Feasible and Clinically Influential: Observational Results from a Novel Ultrasound Program. Journal of Emergency Medicine, Volume 50, Issue 2, 286 – 294

 


Further Reading and Viewing

 

Continue Reading

PoCUS in Pericardial Effusion

Medical Student Clinical Pearl – October 2019

 

Alex Pupek

Faculty of Medicine
Dalhousie University
CC4
Class of 2020

Reviewed and Edited by Dr. David Lewis

All case histories are illustrative and not based on any individual


Case

A 70F with a history of bladder CA, HTN and 4.9cm AAA presented to the Emergency Department (ED) and was Triaged as Level 3 with a chief complaint of generalized weakness. Initial assessment was significant for hypotension and low-grade fever with dysuria elicited on history; she was started on Ceftriaxone with a working diagnosis of urosepsis. Bloodwork and imaging studies were sent to rule out other potential sources of infection.

She had a mild leukocytosis of 12.4, pH of 7.23 and a lactate of 5.0. Point-of-care urinalysis was unremarkable. The chest x-ray revealed an enlarged cardiothoracic ratio of 0.62 compared to 0.46 ten months previously, concerning for a pericardial effusion.

Upon reassessment, the patient appeared unwell with slight mottling to the skin, cool extremities and tenuous blood pressure; point of care ultrasound revealed a large pericardial effusion.  Interventional cardiology was paged; the patient was moved to the trauma area and an emergent pericardiocentesis was performed: 360cc of bloody fluid was removed. The pericardial drain was left in situ.

Post-procedure bloodwork included a troponin of 216 and CK of 204. The patient was admitted to the Cardiac Care Unit and discharged within a week’s time.

 


Pericardial Effusions and The Role of Point-of-Care Ultrasound (POCUS)

The normal pericardial sac contains up to 50 mL of plasma ultrafiltrate [1]. Any disease affecting the pericardium can contribute to the accumulation of fluid beyond 50mL, termed a pericardial effusion. The most commonly identified causes of pericardial effusions include malignancy and infection (Table 1).

 

Table 1 – UpToDate, 2019 – Diagnosis and Treatment of Pericardial Effusions


 

Evaluation of the pericardium with point-of-care ultrasound includes one of four standard views: parasternal long axis, parasternal short axis, subxiphoid and apical (Figure 1). A pericardial effusion appears as an anechoic stripe or accumulation surrounding the heart. Larger effusions may completely surround the heart while smaller fluid collections form only a thin stripe layering out posteriorly with gravity. Seen most commonly post-cardiac surgery, pericardial effusions may be loculated and compress only a portion of the heart. [1,2] (Table 2)

Figure 1[1]


Table 2 [2]


 

Both the pericardial fat pad and pleural effusions can be mistaken for pericardial effusions. The parasternal long-axis view is most helpful to accurately define the effusion with the descending aorta, posterior to the mitral valve and left atrium, serving as a landmark: the posterior pericardial reflection is located anterior to this structure. Fluid anterior to the posterior pericardial wall is pericardial, whereas a pleural effusion will lie posterior. The pericardial fat pad is an isolated dark area with bright speckles, located anteriorly; unlike fluid, it is not gravity dependent. Rather than competing with the cardiac chambers for space within the pericardial sac, the fat pad moves synchronously with the myocardium throughout the cardiac cycle. [1,2] (Figure 2)

Figure 2[1]


A pericardial effusion discovered on POCUS in the ED may be mistaken for tamponade, leading to inappropriate and invasive management in the form of pericardiocentesis.[2]

Patient tolerance of pericardial effusions depends on the rate by which they accumulate. As little as 150-200 mL of rapidly accumulating effusion can cause tamponade whereas much larger amounts of slowly accumulating fluid can be well tolerated. Pericardial effusions formed gradually are accommodated by adaptations in pericardial compliance. A tamponade physiology is reached once the intrapericardial pressure overcomes the pericardial stretch limit.[2] (Figure 3)

Figure 3[2]


The core echocardiographic findings of pericardial tamponade consist of:

  • a pericardial effusion
  • diastolic right ventricular collapse (high specificity)
  • systolic right atrial collapse (earliest sign)
  • a plethoric inferior vena cava with minimal respiratory variation (high sensitivity)
  • exaggerated respiratory cycle changes in mitral and tricuspid valve in-flow velocities as a surrogate for pulsus paradoxus

In the unstable patient with clinical and echocardiographic findings of tamponade, an emergent pericardiocentesis is indicated.[2]

A retrospective cohort study of non-trauma emergency department patients with large pericardial effusions or tamponade, ultimately undergoing pericardiocentesis, found that effusions identified by POCUS in the ED rather than incidentally or by other means saw a decreased time to drainage procedures, (11.3 vs 70.2 hours, p=0.055).[3]

Point of care ultrasound is a valuable tool during the initial evaluation of the undifferentiated hypotensive emergency department patient but should be interpreted judiciously and within clinical context to avoid unnecessary emergency procedures.


Additional Images

From GrepMed


 

echocardiogram-pericardial-tamponade-alternans-effusion

 


References

  1. Goodman, A., Perera, P., Mailhot, T., & Mandavia, D. (2012). The role of bedside ultrasound in the diagnosis of pericardial effusion and cardiac tamponade. Journal of emergencies, trauma, and shock, 5(1), 72.
  2. Alerhand, S., & Carter, J. M. (2019). What echocardiographic findings suggest a pericardial effusion is causing tamponade?. The American journal of emergency medicine, 37(2), 321-326.
  3. Alpert, E. A., Amit, U., Guranda, L., Mahagna, R., Grossman, S. A., & Bentancur, A. (2017). Emergency department point-of-care ultrasonography improves time to pericardiocentesis for clinically significant effusions. Clinical and experimental emergency medicine, 4(3), 128.

 

Continue Reading

Pediatric Hip PoCUS

Pediatric Hip PoCUS

PoCUS Pearl

Dr. Sultan Ali Alrobaian

Dalhousie EM PoCUS Fellowship

Saint John, NB

@AlrobaianSultan

 

Reviewed and Edited by Dr. David Lewis


 

Case:

A 5 year old healthy boy, came to ED with history of limping since waking that morning. He had worsening right hip discomfort. No history of trauma. He had history of cold symptoms for the last 3 days associated with documented low grade fever.

On physical examination, he looked uncomfortable and unwell looking, he had temperature of 38.1 C, HR 130, BP 110/70, RR 20 and O2 saturation of 98% on RA. He was non-weight-bearing with decreased ROM of right hip because of pain.

Pelvis x-ray was unremarkable, he had WBC of 14.4 x 103  and CRP of 40 .

PoCUS of the right hip was performed.


 

Pediatric Hip Ultrasound

Ultrasonography is an excellent modality to evaluate pathologies in both the intra-articular and extra-articular soft tissues including muscles, tendons, and bursae. PoCUS to detect hip effusion can serve as an adjunct to the history and physical examination in case with hip pain.  It is easily accessible, no radiation exposure and low cost.

Technique:

The child should be in supine position. Expose the hip with drapes for patient comfort. If the patient will tolerate it, position the leg in slight abduction and external rotation. A high frequency linear probe is the preferred transducer to scan the relatively superficial pediatric hip, use the curvilinear probe if increased depth is required.

With the patient lying supine, identify the greater trochanter on the symptomatic hip of the patient. Place the linear probe in the sagittal oblique plane parallel to the long axis of the femoral neck (with the indicator toward the patient’s head).

If the femoral neck cannot easily be found, it can be approached using the proximal femur. Place the probe transversely across the upper thigh. Identify the cortex of the proximal femur and then move the probe proximally until the femoral neck appears medially, then slightly rotate the probe and move medially to align in the long axis of the femoral neck.

Assistance is often required from a parent who may be asked to provide reassurance, apply the gel and help with positioning.

Both symptomatic and asymptomatic hips should be examined.

Negative hip ultrasound in a limping child should prompt examination of the knee and ankle joint (for effusion) and the tibia (for toddler’s fracture)

Hip X-ray should be performed to rule out other causes (depending on age – e.g. Perthes, Osteomyelitis, SCFE, Tumour). Limb X-ray should be performed if history of trauma or NAI.

 

Anatomy of the Pediatric Hip:

The ED Physician should readily identify the sonographic landmarks of the pediatric hip. These landmarks include the femoral head, epiphysis and neck, acetabulum, joint capsule and iliopsoas muscle and tendon.

 

A normal joint may have a small anechoic stripe (normal hypoechoic joint cartilage) between cortex and capsule. This will measure less than 2mm and be symmetrical between hips.

 

Ultrasound Findings:

Measure the maximal distance between the anterior surface of the femoral neck and the posterior surface of the iliopsoas muscle. An effusion will result in a larger anechoic stripe (>2mm) that takes on a lenticular shape as the capsule distends. Asymmetry between hips is confirmatory. Synovial thickening may also be visualized.

FH- Femoral Head, S- Synovium, E – Effusion, FN – Femoral Neck

Criteria for a pediatric hip effusion is:

  • A capsular-synovial thickness of 5 mm measured at the concavity of the femoral neck, from the anterior surface of the femoral neck to the posterior surface of the iliopsoas muscle
  • OR a 2-mm difference compared to the asymptomatic contralateral hip

Right hip effusion, normal left hip, arrow heads – joint capsule, IP – iliopsoas


Interpretation

PoCUS has high sensitivity and specificity for pediatric hip effusion.

  • —
  • Sensitivity of 90%
  • Specificity of 100%
  • Positive predictive value of 100%
  • Negative predictive value of 92%

 

PoCUS cannot determine the cause of an effusion. It cannot differentiate between transient synovitis and septic arthritis. Diagnosis will be determined by combining history, pre-test probability, examination, inflammatory markers and PoCUS findings. If in doubt, septic arthritis is the primary differential diagnosis until proven otherwise.

Several clinical prediction algorithms have been proposed. This post from pedemmorsels.com outlines these nicely:

 

Septic Arthritis

 

 


 

Back to our case:

Ultrasonography cannot definitively distinguish between septic arthritis and transient synovitis, the ED physician’s concern for septic arthritis should be based on history, clinical suspicion and available laboratory findings.

The patient was diagnosed as case of septic arthritis. The patient received intravenous antibiotics empirically. Pediatric orthopedic consultation was obtained, and ED arthrocentesis was deferred as the patient was immediately taken to the operating room for hip joint aspiration and irrigation, confirming the diagnosis.


 

References

 

Continue Reading

Color Flow Doppler to Assess Cardiac Valve Competence

Color Flow Doppler to Assess Cardiac Valve Competence

Resident Clinical Pearl (RCP) April 2019

Dr. Scott Foley – CCFP-EM PGY3 Dalhousie University, Halifax NS

Reviewed by Dr. David Lewis

 


 

Background:

When colour Doppler is initiated, the machine uses the principals of the Doppler effect to determine the direction of movement of the tissues off which it is reflecting.

The Doppler effect is the change in frequency of a wave in relation to an observer who is moving relative to a wave source. It was named after the Austrian physicist Christian Doppler who first described the phenomenon in 1842. The classic example is the change in pitch of a siren heard from an ambulance as it moves towards and away from an observer.

These principles are applied to POCUS in the form of colour Doppler where direction of flow is reflected by the colour (Red = moving towards the probe, Blue = moving away from the probe), and the velocity of the flow is reflected by the intensity of the colour (brighter colour = higher velocity).
*Note: the colour does not represent venous versus arterial flow.

 

The use of colour Doppler ultrasound can be useful in the emergency department to determine vascular flow in peripheral vessels as well as through the heart. It is one way to determine cardiac valve competency by focusing on flow through each valve.


 

Obtaining Views:

To optimize valve assessment, proper views of each valve must be obtained. It is best to have the direction of the ultrasound waves be parallel to the direction of flow. External landmarks for the views used are seen below:

  • Mitral Valve and Tricuspid Valve: The best view for each of these is the apical 4 chamber view. If unable to obtain this view, the mitral valve can be seen in parasternal long axis as well.
  • Aortic Valve: The best view is the apical 5 chamber or apical 3 chamber but are challenging to obtain. Instead, the parasternal long axis is frequently used.
  • Pulmonic Valve: Although not commonly assessed, the parasternal short axis can be used.
  • Visit 5minutesono.com for video instruction on obtaining views

Parasternal long axis: MV, AV

Parasternal short axis: PV, TV

Apical 4 chamber: TV, MV


 

Assessing Valvular Competency:

How to examine valvular competency:

  1. Get view and locate valve in question
  2. Visually examine valve: opening, closing, calcification
  3. Use colour Doppler:
    1. Place colour box over valve (as targeted as possible (resize select box) to not include other valves)
    2. Freeze image and scroll through images frame by frame
    3. Examine for pathologic colour jets in systole and diastole
  4. Estimating severity:
    1. Grade 1 – jet noticeable just at valve
    2. Grade 2 – jet extending out 1/3 of atrium/ventricle
    3. Grade 3 – jet extending out 2/3 of atrium/ventricle
    4. Grade 4 – jet filling entire atrium/ventricle

See video tutorial below for more


Mitral Regurgitation A4C

Tricuspid Regurgitation A4C

Aortic Stenosis PSLA


Bottom line:

Color flow Doppler on POCUS is a straightforward way to assess for valvular competency in the Emergency Department. A more detailed valvular assessment requires skill, knowledge and experience.

 


Useful Video Tutorials:

Mitral Regurgitation

 

Aortic Stenosis vs Sclerosis

Tricuspid Valve


References:

  1. https://www.radiologycafe.com/medical-students/radiology-basics/ultrasound-overview
  2. By Patrick J. Lynch and C. Carl Jaffe – http://www.yale.edu/imaging/echo_atlas/views/index.html, CC BY 2.5, https://commons.wikimedia.org/w/index.php?curid=21448310
  3. 5minutesono.com
  4. ECCU ShoC 2018 powerpoint, Paul Atkinson, David Lewis
Continue Reading

A focus on PoCUS – A reflection on the value of a PoCUS elective as a medical student

Medical Student PoCUS Elective Reflection

Nick Sajko

Class 2019 Dalhousie Medicine

@saj_ko

 

Nick Sajko, reflects on his experience after completing the SJRHEM PoCUS Elective. Nick is now a PGY1 in Emergency Medicine at the University of Alberta.


 

When my fourth and final year of medical school came around, I was at a crossroads: What did I want to do for the rest of my life? As many will attest, this question influences the choices you make in your clerkship years, especially in deciding on fourth year electives. I was ironically unfortunate in the fact that I had a broad range of interests in a system that does not always benefit those in my situation. I chose electives in Emergency Medicine, Internal Medicine, and Family Medicine – all of them providing valuable learning opportunities and a chance to hone my skills as a junior clinician. However, these “classic” or “bread and butter” electives paled in comparison to the experiences I obtained through my Point of Care Ultrasound (PoCUS) elective at SJRH – a unique elective opportunity relevant to any medical trainee.

 

It is my hope that this reflection piece will provide insight into those deciding on their elective choices and convince some of you to choose a few electives that are off the beat and path and unique. In particular, an elective in the field of PoCUS – a tool that is more useful than some may consider.

 


 

What does a PoCUS elective at SJRH entail? What can I expect?

 

My elective consisted of regularly scheduled shifts within the Emergency Department, paired with senior staff who have specialized training in PoCUS. During these shifts, I would see patients as if I was conducting a bread and butter Emergency Medicine elective, however, cases would be chosen based on the potential for ultrasound practice. This allowed me to gain a remarkable appreciation for the breadth of PoCUS applications within the primary care setting, while also allowing me to gain extremely valuable hands on time with ultrasound in a supervised setting.

 

In addition to the above, I was provided with numerous resources so as to allow for self-directed learning. One of the most valuable resources provided was the opportunity to use the SJRH EM state-of-the-art PoCUS simulator – an invaluable tool for any level of PoCUS experience. Closer to the end of this elective experience, I was offered opportunities to write PoCUS focused case-reports, as well as undergo PoCUS competency exams to solidify my skills within this setting.

The skills I learned in this elective carried forward with me into my various other electives, and provided me with a unique skill-set as a junior learner. Whether it was doing point of care ECHO in my cardiology elective, FAST scans during trauma-codes in my other Emergency Medicine electives, or assessing volume status in complex general internal medicine patients, my competency in these PoCUS applications definitely impressed both residents and staff alike during my fourth year!

 


Why is PoCUS relevant to me as a medical student wanting to specialize in: (insert hyper-specific / niche specialty here)

One question many people may have at this point is, “why would I do this if I wasn’t interested in Emergency Medicine?”. PoCUS is a constantly evolving field, with new and innovative applications being seen in clinical practice constantly. With this, PoCUS can play a huge role in many different specialties: Internal Medicine physicians use PoCUS to provide support to presumed diagnoses and perform certain procedures (such as placing central lines), while surgeons can utilize PoCUS in the examination of traumas, as well as to support diagnoses in the pre- and post-operative patient. PoCUS is steadily becoming a sought after skill in most of the medical and surgical specialties, where proficiency in its use and interpretation can set you apart from other trainees, and more importantly, add to the competency of your patient care!

The value of having this elective through the Emergency Department allows for students to test their skills in the undifferentiated patient – something that will provide learners with enhanced deduction and reasoning skills, no matter what specialty they are interested in. It also allows learners to have access to a huge pool of patients, with a wide breadth of medical problems, thus optimizing this unique elective’s value.

 


 

Is choosing a “unique”, “niche”, or “extra-focused” elective, such as PoCUS, detrimental to my CaRMS application?

Fourth year electives and CaRMS amalgamate into a cruel and unusual game – while most medical school staff and administrators will tell you that your fourth year electives are to be used to “try new things”, this is often not the reality. With the competitiveness of specialties on a constant upward trend, more and more learners choose to conduct the majority of their electives in the single specialty they are interested in. This is great for those who are certain about the field they want to practice in, but creates a predicament for those of us who want to explore a number of options before making a decision.

As I mentioned above, I was in the latter group – with interests spanning 3 different specialties, including some very competitive ones. I chose to go against the grain, so to speak, and opted to conduct a variety of electives in different specialties – including some niche electives in things such as PoCUS. Not only were these opportunities fantastic from a learning point of view, I would argue that they allowed me to stand out amongst a sea of similar applicants and provided me with a unique skill set – something that I think most programs will find enticing! But most importantly, they were fun, exciting, and allowed me to experience my fourth year of medical school the way its advertised.

For those that know their specialty of choice, I would provide the same advice – use this year to experience new things and create a unique learning identity that will set you apart from the rest.

 


 

After all the worry and panic with my elective choices, feeling like I wasn’t committed enough to one specific specialty, I ended up matching to my first-choice field and location. I think this is in large part due to the fact that I was well-rounded in my experiences and had taken the chance to explore unique learning opportunities through this fantastic elective at SJRH. The staff, the environment, and the resources that come with the PoCUS elective at SJRH EM are second to none – I am confident in saying that this elective was the most beneficial and enjoyable component to my fourth year training. Hopefully my thoughts and reflections on this experience will allow some of you to follow a similar path.

 

Nicholas Sajko, B.Sc, MD

Emergency Medicine PGY1

University of Alberta

 


 

Click here for more information on the SJRHEM PoCUS Electives and Fellowships

Continue Reading

PoCUS – Dilated Aortic Root

Medical Student Clinical Pearl

James Kiberd

Class 2019 Dalhousie Medicine

Reviewed and Edited by Dr. David Lewis


Case:

A 66 year-old female presented to the Emergency Department with shortness of breath and back pain. She had a known dilated aortic root, which was being followed with repeat CT scans. Given the nature of her presenting complaint, a PoCUS was performed to assess her aorta.

 

 

 

Long Axis Parasternal View:

PoCUS for Cardiac imaging has been studied in the acute care setting; focusing on the assessment for pericardial effusion, chamber size, global cardiac function, and volume status, and cardiac arrest.1

In the setting of acute aortic dissection, further evaluation is often recommended depending on the practitioner’s skill level.2 There have been case reports where ultrasound has been used to assess both Type A and Type B aortic dissections.3–5

In order to assess the aortic root, have the patient in a supine position. Either the phased array or the curvilinear probe can be used depending on examiner’s preference. The probe should be positioned with the marker towards the patient’s right shoulder on the anterior chest to the left of the patient’s lower left sternal border. By tilting the transducer between the left shoulder and right hip, long axis views are obtained at different levels with the goal of identifying four main structures; the aorta, the left atrium, and the right and left ventricles. The parasternal long axis view of our patient is shown in Figure 1, where her aortic root measured 3.83cm.

 

Figure 1: Parasternal Long Axis View of Heart: Patient’s root diameter was found to be 3.83cm.

More generally, this view can be used to assess left ventricular contractility and the presence of pericardial effusion, which were not present in this patient. She went on to have a confirmatory CT scan where her aortic root was found to be unchanged from her last scan and was 3.8 cm in diameter as assessed by PoCUS.

In Summary:

Although not rigorously studied to assess aortic root dilatation at the bedside, we present a case where PoCUS was reliable in the assessment of the aortic root. There have been other cases of aortic dissection identified by ultrasound in the emergency department setting, however confirmatory studies (either CT scan or formal echocardiography) are still recommended.


References:

  1. Labovitz AJ, Noble VE, Bierig M, et al. Focused cardiac ultrasound in the emergent setting: A consensus statement of the American society of Echocardiography and American College of Emergency Physicians. J Am Soc Echocardiogr. 2010;23(12):1225-1230. doi:10.1016/j.echo.2010.10.005.
  2. Andrus P, Dean A. Focused cardiac ultrasound. Glob Heart. 2013;8(4):299-303. doi:10.1016/j.gheart.2013.12.003.
  3. Perkins AM, Liteplo A, Noble VE. Ultrasound Diagnosis of Type A Aortic Dissection. J Emerg Med. 2010;38(4):490-493. doi:10.1016/j.jemermed.2008.05.013.
  4. Bernett J, Strony R. Diagnosing acute aortic dissection with aneurysmal degeneration with point of care ultrasound. Am J Emerg Med. 2017;35(9):1384.e3-1384.e4. doi:10.1016/j.ajem.2017.05.052.
  5. Kaban J, Raio C. Emergency department diagnosis of aortic dissection by bedside transabdominal ultrasound. Acad Emerg Med. 2009;16(8):809-810. doi:10.1111/j.1553-2712.2009.00448.x.
Continue Reading