COVID-19 Airway Rounds – Dr. George Kovacs

Thanks to Dr. George Kovacs at DalEM for providing this link to his recent COVID-19 Airway Rounds. This presentation is informative, evidence-based and highly entertaining. SJEM is proud to be part of DalEM and associated with so many great educators.

Supporting material is available here


AIME Airway

Canada’s premium Airway Management course. Visit the website for access to free airway resources and also registration for the courses.

Continue Reading

Code Discussion in the ED

EM Reflections March 2021 – Code Discussion in the ED

Thanks to Dr. Paul Page for leading this month’s discussion.

All cases are imaginary but bring up important learning points.

Authored & Copyedited by Dr. Mandy Peach

 

Case

An 80 yo female is brought in by EMS in respiratory distress. There is a known history of end stage CHF. Collateral from the husband on scene was that his wife has been having increasing shortness of breath for 1 week, increased ankle swelling and was sleeping sitting up in the recliner in the living room. He called EMS today as she could not catch her breath when walking upstairs in the home.

The patient is on CPAP with EMS and has signs of central cyanosis. You direct the RT to switch her to Bipap as she is put on the monitors and a new set of vitals are obtained. You quickly examine the patient and find bilateral pitting edema to the knees and both peripheral and central cyanosis. There are audible crackles throughout both lung fields. You grab your ultrasound probe and find diffuse B-lines bilaterally in the lung fields and a cardiac view demonstrates a severely decreased ejection fraction. The IVC is dilated and not collapsing with respirations. She looks drowsy and is not responding to questions. She is not tolerating Bipap well. Her new vitals are: BP 98/62 HR 112 RR 24 O2 sat 85% on BiPAP T 37.4.

You suspect cardiogenic shock. This patient needs to be intubated. But you stop momentarily – this is an elderly patient with end stage cardiac disease. The prognosis for this patient is likely poor. Is intubation in the best interest of the patient?

This is a scenario we are often placed in as ED physicians. Just because we have the ability to resuscitate a patient doesn’t necessarily mean they will have a positive functional recovery. Here the patient is drowsy and in respiratory distress – she cannot tell us her wishes for care. In many cases, end of life care has not been discussed1 and in this situation the care decisions lie with the family/loved ones or us as physicians.

Current practice is that each patient is a ‘full code’ unless otherwise indicated2. So regardless of age, comorbidities, quality of life – if a deterioration of vital signs is seen every attempt is made to resuscitate this patient regardless of the likelihood of a functional recovery. Unlike the rest of medicine, this care is a ‘one fits all’ approach where initial efforts are carried out regardless of clinical situation. Whether or not this is the right approach is not the focus of discussion. Instead this highlights the importance of advanced care planning and goals of care discussions taking place when a patient is well and normalizing this process.

Back to our patient – they are circling the drain. You ask the medical student working with you to look up the patient chart and see if any previous code discussion has taken place. After a quick review there is no documentation of a code status. Even if there was – would this change your management?

Code discussions are not set in stone. A patient with capacity can change their mind at any time. Loved ones acting as substitute decision makers/power of attorney are also able to make decisions for the patient in the event a patient cannot make decisions for themselves.
Ideally you want to have a discussion with the family to set realistic expectations and together make an informed decision for the patient.

Luckily the husband and patient’s daughter are already in the department. You decide to have a discussion before proceeding with intubation. What are your goals for this discussion3?

  • Choose a quiet location away from the patient
  • Give your clear medical opinion and recommendations rather than options only, this way the family doesn’t feel the decision is completely up to them.
  • Use straight forward language that is easy to understand
  • “Review the risks of progressing to CPR if the patient declines including:
    o Incomplete recovery
    o Prolonged death
    o Uncomfortable investigations and treatments
    o Ventilator dependence”
  • Avoid a power struggle with the family if they choose to go against your recommendations.

What are some barriers we face in the emergency department when discussing and prognosing end of life care with patients or family members3?

We are poor at predicting prognosis, partly because this isn’t within our scope of care in initial resuscitation of patients, but also because there is always uncertainty in medicine – and this should be communicated to the family. As we see elderly or co-morbid patients in the department without a prior code status there may be a feeling that this should be the responsibility of the primary care provider and not the ED doc. Lastly, this is a difficult discussion to have regardless of timing and communicating prognosis may not always go smoothly. We may find ourselves in the same situation as the case above – with a crashing co-morbid patient with no clear goals of care. Unfortunately this is an especially difficult time to have this conversation, but it is a necessary one.

Since this is such a difficult discussion to have, is there any approach that might be helpful3?

Think SILVER

Seeks Information:

  • Elicits information regarding baseline level of function, behaviors, and symptoms that suggest progressive decline
  • Elicits information regarding current diagnosis, prognosis, and treatment plan
  • Elicits information regarding key players in decision making, including family and health care workers
  • Elicits information regarding previous end of life discussions, including advance directives

Life Values:

  • Elicits information regarding the patient’s personality and approach to life
  • Elicits information regarding how the patient views death and dying

Educates/Extends Care:

  • Pr0vides information regarding the patient’s disease process, current condition, and treatment options
  • Explains how end of life decisions will impact further treatment

Responds:

  • Solicits questions from family and offers continued support and availability for further information.”

You have a discussion with the family keeping in mind the above approach. You clearly lay out the poor prognosis and that you would suggest palliating the patient and avoiding any aggressive resuscitation. The daughter is upset and states “So you’re going to do nothing for my mother?”

This is a common misconception – that ‘do not resuscitate’ is the equivalent of doing ‘nothing’. Choosing not to do compressions or intubate a patient is the decision when an arrest or peri-arrest situation arises. However, patients can still receive medical care with goals in mind depending on the clinical situation. For example, using antibiotics in a patient with metastatic cancer who has pneumonia and who is clinically stable. Or in this situation – providing medications and oxygen to ensure a patient is comfortable and without suffering as they near the end of their life.

One approach could be to positively state all the things you will do for her mother, as oppose to what you will not be doing3.

Wording surrounding code status has also moved towards “allowing natural death” instead of “do not resuscitate” – again moving away from the idea that we are not providing a medical service.

You lay out your plan and positively reinforce the care you can provide for the patient. They agree that aggressive care would not be what the patient wanted and they agree to proceed with palliation. The husband asks you how much time she has left, and if they have time to call in family.

What are signs that help predict timing of death3?

Delirium with hypotension and tachycardia: median survival 10 days
Death rattle: medial survival 1 day
Respirations with mandibular movement: median survival 2.5 hours
Cyanosis to extremities: medial survival 1 hour”

Your patient is cyanotic and essentially crashing. You again express that predicting is difficult, but you anticipate she may die soon and you suggest calling in the family.

You discuss interim management of the patient’s symptoms while you await palliative care. As the patient is quite short of breath one of your recommendations is opioids to help. The husband says he does not want opioids given as they will ‘kill her sooner’. How do you respond?

Opiods can help with the sensation of shortness of breath. The doses used for dyspnea are smaller than the doses used for pain.

“Studies have shown that O2 and CO2 levels stay the same despite the decreased respiratory rate associated with opioids. Opioids in the palliative patient are appropriate and ethically permissible as long as the intent is symptoms relief.”3

See the infographic below for symptom management in palliative care patients3. Being familiar with palliative care is pertinent – these patients are ours until consultants take over care, and in current climate often we end up palliating patients.

The husband agrees with your plan. They stay with the wife in the ED and within a short time a bed is available in palliative care. The patient dies comfortably that night. What about if the family wasn’t there? And we had to choose to resuscitate the patient or not?

There is no right answer. Choosing to intubate the patient and have the discussion with family after the fact is one option. Choosing not to intubate the patient and provide conservative management until a discussion can be had is another option. Sometimes these will be patients with end stage disease but the presentation may be a reversible one. Sometimes these will be healthy patients with irreversible presentations.

Regardless, clearly documenting on the chart your rationale and approach can be helpful in laying out your thought process.

These are difficult situations, and at the end of the day you have to be ethically comfortable with your decision. Having open, honest conversations with family/loved ones as outlined above can certainly help us feel at ease with our decisions and help families and patients come to terms with worsening conditions.

 

References and further reading:

Dong, K. CanadiEM Frontline Primer – Advance Care Planning and Goals of Care Review. CanadiEM. 2020. https://canadiem.org/canadiem-frontline-primer-advance-care-planning-and-goals-of-care-review/ (Assessed April 25, 2021)

Kwok, E. From Full Code to No Code. CanadiEM. 2012. https://canadiem.org/from-full-code-to-no-code/. (Assessed April 25, 2021).

Greewal K, Helmin A.Episode 70 End of Life Care in Emergency Medicine. Emergency Medicine Cases. Sept 2015. https://emergencymedicinecases.com/end-of-life-care-in-emergency-medicine/. (Assessed April 25, 2021).

Continue Reading

Congratulations to Dr. Rob Dunfield – CAEP Resident Research Award Winner!

CAEP 2021 Resident Research Award Winner – Dr. Rob Dunfield

A big congratulations goes out to our very own resident researcher, Dr. Rob Dunfield! Dr. Dunfield is a second year resident in the FMEM Program here in Saint John. He is one of seven residents recognized nationally for their excellent research abstract submissions to the annual CAEP conference. Dr. Dunfield’s research project is a secondary study from the SHOC-ED group and is entitled:  “Does IVC Ultrasound independently predict fluid status in spontaneously breathing, undifferentiated hypotensive patients? SHOC-IVC”.

Congratulations again, Dr. Dunfield!

Continue Reading

Scaphoid Fracture – Can PoCUS disrupt the traditional ‘splint and wait’ pathway?

 

PoCUS Fellow Pearl

Dr. Melanie Leclerc, CCFP-EM

MSK PoCUS Fellow

Dalhousie University Department of Emergency Medicine

 

Reviewed & Edited by Dr David Lewis (@e_med_doc)

All case histories are illustrative and not based on any individual


 

Case:

A 37 year old, right hand dominant, carpenter presents to your local ED with a complaint of right wrist pain. He was on a step-stool and lost his balance earlier today. He fell landing on his outstretched arm and had an acute-onset of radial-sided wrist pain. He denies any other injury. There are no neurologic complaints.

On exam, there is no visible deformity. The skin is closed and there is some swelling noted. The patient is tender over the anatomic snuff box as well as volarly over the scaphoid. There is pain noted with axial loading of the thumb. There is no other tenderness. ROM is within normal limits. The limb is distally neurovascularly intact.


X-rays are normal.

An occult scaphoid fracture is suspected. At this institution, patients with suspected occult scaphoid fracture are placed in a thumb spica splint and referred to the local hand surgeon to be seen in ~10-14 days for repeat assessment and X-ray.

Can Point of Care Ultrasound change this traditional “splint and wait” patient pathway?


 

Background:

Scaphoid fracture is a common presentation to the Emergency Department accounting for approximately 15% of all wrist injuries and 70% of carpal fractures. Up to 30% of the time, radiographs at initial presentation appear normal making fracture a commonly missed injury for Emergency physicians. A failure to recognize this injury can lead to chronic pain and functional impairment for patients. Particularly, fractures of the proximal pole (most distant to the blood supply) can lead to avascular necrosis (AVN) at high rates. Non-union can lead to scaphoid non-union advanced collapse (SNAC wrist) which can perpetuate further degenerative changes throughout the carpus. This can cause a significant impact on quality of life and occupation. Early detection of fracture could expedite fixation and possibly results in better outcomes. Further study in this area is needed.


 

Anatomy:

The scaphoid bone lies in the radial aspect of the proximal carpal row. It’s unique shape (“twisted peanut”), lends to easy recognition. It articulates proximally with the distal radius, distally with the trapezium, and on its’ ulnar aspect with the lunate to form the scapho-lunate interval. The blood supply to the scaphoid is unique in that the majority of it is retrograde. The dorsal carpal branch of the radial artery supplies the bone from distal to proximal. A small proportion of the blood supply originates at the proximal end. The boundary between the two supplies creates a “watershed” area prone to non-union and AVN.


 

Classification of Fractures:

Scaphoid fractures are classified by location. These regions are the proximal, middle and distal thirds which account for 20%, 75%, and 5% of the fractures respectively. The stability of fractures is determined by the displacement (>1mm) and angulation (scapholunate angle >60 and radiolunate angle >15). The Hebert Classification as endorsed by Traumapedia can be found below.


 

Traditional Imaging:

Imaging of these suspected injuries varies. Traditionally serial X-rays were used, but have been found to be poorly sensitive even several weeks after injury. Bone scan has also been used as an alternative due to it’s high sensitivity, but has poor specificity and provides no further information regarding the nature of the fracture. CT is relatively sensitive and specific and provides information for pre-operative planning. MRI is considered the gold standard, but is difficult to obtain in a timely manner in Canada.

Bäcker HC, Wu CH, Strauch RJ. Systematic Review of Diagnosis of Clinically Suspected Scaphoid Fractures. J Wrist Surg. 2020 Feb;9(1):81-89. doi: 10.1055/s-0039-1693147. Epub 2019 Jul 21. PMID: 32025360; PMCID: PMC7000269.


 

PoCUS Technique:

  • Linear probe

  • Consider waterbath, gel standoff pad, or bag of IV fluid

  • Scan with the wrist ulnarly deviated

  • Scan in the longitudinal and transverse orientations of volar, lateral and dorsal aspects

  • Place the probe in longitudinal orientation dorsally over lister’s tubercle of the radius and scan distally until the scaphoid is visualized in the snuff box. Scan radial to ulnar.

  • Rotate to the transverse orientation and scan through proximal to distal

  • Volarly, in the transverse plane, identify the tendon of the flexor carpi radialis (this lies radial to the easily identifiable palmaris longus tendon on exam). The scaphoid is found deep to this. Scan proximal to distal.

  • Rotate to the longitudinal orientation and scan radial to ulnar

 


 

Video Demonstration:

 


 

Findings:

  • Cortical disruption

  • Periosteal elevation

  • Hematoma


 

The Evidence:

  • Early advanced imaging (CT or MRI) compared to initial 2 week immobilisation proved more cost effective and had better patient oriented outcomes (ie. missed work).(7)
  • A systematic review and meta analysis of moderate to high quality studies published in 2018 found that ultrasound had a mean sensitivity of ~89% and specificity of ~90% for detection of occult scaphoid fractures.(1)
  • Similar results were also reported by another systematic review in 2018.(8)
  • Pocus was shown to have a comparable sensitivity to CT for occult scaphoid in a systematic review published in 2020.(2)

 

Limitations:

  • Only useful if positive
  • Operator experience dependent
  • US probe and frequency dependant
  • Potential for false positives due to injury of nearby structure causing hematoma
  • Potential for false positives in context of arthritis or remote trauma

 

Bottom line:

  • Useful if positive
  • Still need definitive test to further delineate fracture (ie: for operative planning)
  • Could expedite CT
  • Could expedite specialist follow-up
  • May improve ER physician diagnostic certainty
  • May improve patient trust and compliance with splinting
  • Further study is needed

 

Case Conclusion:

Scaphoid cortical disruption was visualized using PoCUS. After discussion with the hand surgeon, a CT Scan of the wrist was performed which confirmed a minimally displaced waste fracture of the scaphoid. The patient was splinted and seen the next day in clinic for discussion regarding operative management.


 

Further Review:

 

 


 

References

  1. Ali M, Ali M, Mohamed A, Mannan S, Fallahi F. The role of ultrasonography in the diagnosis of occult scaphoid fractures J Ultrason 2018; 18: 325–331.
  2. Bäcker HC, Wu CH, Strauch RJ. Systematic Review of Diagnosis of Clinically Suspected Scaphoid Fractures. J Wrist Surg. 2020 Feb;9(1):81-89.
  3. Bakur A. Jamjoom, Tim R.C. Davis. Why scaphoid fractures are missed. A review of 52 medical negligence cases, Injury, Volume 50, Issue 7, 2019, Pages 1306-1308.
  4. Carpenter CR et al. Adult Scaphoid Fracture. Acad Emerg Med 2014; 21(2): 101-121.
  5. Gibney B, Smith B, Moughty A, Kavanagh EC, Hynes D and MacMahon PJ American Journal of Roentgenology 2019 213:5, 1117-1123
  1. Jenkins PJ, Slade K, Huntley JS, Robinson CM. A comparative analysis of the accuracy, diagnostic uncertainty and cost of imaging modalities in suspected scaphoid fractures. Injury. 2008;39:768–774.
  2. Karl, John W. MD, MPH1; Swart, Eric MD1; Strauch, Robert J. MD1 Diagnosis of Occult Scaphoid Fractures, The Journal of Bone and Joint Surgery: November 18, 2015 – Volume 97 – Issue 22 – p 1860-1868.
  3. Kwee, R.M., Kwee, T.C. Ultrasound for diagnosing radiographically occult scaphoid fracture. Skeletal Radiol 47, 1205–1212 (2018).
  4. Malahias MA, Nikolaou VS, Chytas D, Kaseta MK, Babis GC. Accuracy and Interobserver and Intraobserver Reliability of Ultrasound in the Early Diagnosis of Occult Scaphoid Fractures: Diagnostic Criteria and a Way of Interpretation. Journal of Surgical Orthopaedic Advances. 2019 ;28(1):1-9.
  5. Mallee WH, Wang J, Poolman RW, Kloen P, Maas M, de Vet HCW, Doornberg JN. Computed tomography versus magnetic resonance imaging versus bone scintigraphy for clinically suspected scaphoid fractures in patients with negative plain radiographs. Cochrane Database of Systematic Reviews 2015, Issue 6.
  6. Mallee, W.H., Mellema, J.J., Guitton, T.G. et al. 6-week radiographs unsuitable for diagnosis of suspected scaphoid fractures. Arch Orthop Trauma Surg 136, 771–778 (2016).
  7. Melville, D., Jacobson, J.A., Haase, S. et al. Ultrasound of displaced ulnar collateral ligament tears of the thumb: the Stener lesion revisited. Skeletal Radiol 42, 667–673 (2013).
  8. Meyer, P., Lintingre, P.-F., Pesquer, L., Poussange, N., Silvestre, A., & Dallaudiere, B. (2018). Imaging of Wrist Injuries: A Standardized US Examination in Daily Practice. Journal of the Belgian Society of Radiology, 102(1), 9.
  9. Mohomad et al. 2019. Accuracy of the common practice of doing X-rays after two weeks in detecting scaphoid fractures. A retrospective cohort study. Hong Kong Journal of Orthopaedic Research 2019; 2(1): 01-06.
  10. Neubauer J, Benndorf M, Ehritt-Braun C, et al. Comparison of the diagnostic accuracy of cone beam computed tomography and radiography for scaphoid fractures. Sci Rep 2018; 8:3906.
  11. Ravikant Jain, Nikhil Jain, Tanveer Sheikh, Charanjeet Yadav. 2018. Early scaphoid fractures are better diagnosed with ultrasonography than X-rays: A prospective study over 114 patients, Chinese Journal of Traumatology, Volume 21, Issue 4, Pages 206-210.
  12. Senall, JA, Failla, JM, Bouffard, JL. 2004. Ultrasound for the early diagnosis of clinically suspected scaphoid fracture. J Hand Surg Am, 29:400-405.
  13. https://essr.org/content-essr/uploads/2016/10/wrist.pdf
  14. http://www.bonetalks.com/scaphoid
  15. https://radiopaedia.org/articles/scaphoid-fracture
  16. https://sketchymedicine.com/2014/07/scaphoid-bone-anatomy-and-fractures/
  17. https://radiopaedia.org/cases/scaphoid-fracture-11?lang=gb
  18. https://www.orthobullets.com/hand/6034/scaphoid-fracture
  19. https://meeting.handsurgery.org/abstracts/2018/EP15.cgi
  20. https://www.researchgate.net/figure/Bone-scintigraphy-patient-C-of-the-hands-the-patient-with-a-scaphoid-fracture-on-the_fig4_50399987
  21. https://www.youtube.com/watch?v=7pCXiRQMRKo&t=5s&ab_channel=UltrasoundPod
  22. https://litfl.com/terry-thomas-sign
Continue Reading

Introduction to Transesophageal Echo – Basic Technique

Thanks to Dr. Jennifer Cloutier, Cardiac Anesthesiologist, for delivering a great session.


This beginner guide is designed for those familiar with transthoracic echo and just starting to use TEE. ED indications and TEE utility in the emergency setting are briefly discussed at the end of this post.


Requirements

  • Sterile transducer – This requires a sterilization facility, protocol and collaboration with other departments
  • Patient preparation – In ED usually intubated, unconscious or sedated.
  • Optional – spray the transducer with topical local anesthetic

Contraindications

  • Suspected esophageal perforation, stricture or trauma
  • Varices

Insertion

  • Hold transducer control module with left hand and support against your abdomen (see pic 1)
  • Extend transducer to full length, holding end with right hand
  • Check the control wheels are functioning correctly before inserting the transducer
  • Ensure transducer head is facing upwards (use anterior length markings to maintain orientation)
  • Insert transducer on left side of tongue
  • Use bite guard – e.g cut corrugated airway tubing
  • Advance to mid esophagus
  • Look for left atrium – this is the first window

 

Orientation

The transducer can be manipulated into several orientations:

  • Rotate control module clockwise to orientate to patient right
  • Rotate control module anticlockwise to orientate to patient left
  • Rotate “Big Wheel” clockwise to antiflex and orientate anteriorly
  • Rotate “Big Wheel” anticlockwise to retroflex and orientate posteriorly
  • Rotate “Small Wheel” clockwise to flex right
  • Rotate “Small Wheel” anticlockwise to flex left
  • Advance transducer deeper into esophagus
  • Withdraw transducer less deeply in esophagus

(a) Advance, withdraw: Pushing or pulling the tip of the TEE probe; (b) turn to right, turn to left (also referred as clockwise and anticlockwise): rotating the anterior aspect of the TEE probe to the right or left of the patient; (c) anteflex, retroflex: anteflex is flexing the tip of the TEE probe anteriorly by turning the large control wheel clockwise. Retroflex is flexing the tip of the TEE probe posteriorly by turning the large wheel anticlockwise; (d) Flex to right, Flex to left: flexing the tip of the TEE probe with the small control wheel to the patient’s right or left. The probe flexion to the right and left may not be necessary and should be avoided to minimize trauma to the esophagus 

 

 

Multiplane Imaging Angle

With all modern TEE transducers the transducer beam can be rotated within the probe to generate different beam angles. This is achieved using 2 buttons on the control module, one button rotates from 0 to 180 degrees, the other button rotates it back from 180 to 0 degrees. Using the buttons in combination any desired angle between 0 and 180 degrees can be achieved.

At 0 degrees the transducer beam is transverse (orientated Left screen – Right patient)

At 90 degrees the transducer beam is longitudinal

At 180 degrees the transducer beam is transverse (orientated Left screen – Left patient)

 

Multiplane Imaging angle is depicted on the monitor using a pictogram dial.

In this example the TEE probe is located in the Mid Esophageal location. View A – the multiplane imaging angle is 10 degrees and a 4 chamber view is generated. View B – the multiplane imaging angle is 90 degrees and a 2 chamber view is generated.

 

 


 

Useful video tutorial explaining orientation

 

 


 

Core Views

For the beginner, standard views can be achieved by using a guide that shows the location of the transducer (e.g Mid Esophageal, Trans-Gastric along with the optimal multiplane angle (see below).

Clearly every patient will have slightly different anatomy and cardiac axis, so these guides are just a starting point. Fine tuning of all the above will be required.

The Consensus Statement of the American Society of Echocardiography and the Society of Cardiovascular Anesthesiologists provides an excellent outline of the basic perioperative TEE examination. Although this examination is likely to be much more comprehensive than what is needed in the Emergency Department (e.g during a code or peri arrest), it provides a useful guide to practicing all the important views that may be required in most situations.

 


 

This short video tutorial provides a useful outline of core views

 


ME 4 Chamber View


 

Indications

  • Cardiac Arrest – continuous echo evaluation of cardiac contractility, without impacting chest compression
  • Peri Arrest – assists with diagnosis and fluid resuscitation,
  • Undifferentiated Hypotension – assists with diagnosis and fluid resuscitation

US Probe: Transesophageal Echocardiography in Cardiac Arrest

The post above and the article below provide a more detailed discussion on the use of TEE in cardiac arrest.

New Concepts of Ultrasound in the Emergency Department: Focused Cardiac Ultrasound in Cardiac Arrest

 

 


References

Reeves ST, Finley AC, Skubas NJ, et al. Basic perioperative transesophageal echocardiography examination: a consensus statement of the American Society of Echocardiography and the Society of Cardiovascular Anesthesiologists. J Am Soc Echocardiogr. 2013;26(5):443–456. doi:10.1016/j.echo.2013.02.015

Arntfield, Robert et al. Focused Transesophageal Echocardiography by Emergency Physicians is Feasible and Clinically Influential: Observational Results from a Novel Ultrasound Program. Journal of Emergency Medicine, Volume 50, Issue 2, 286 – 294

 


Further Reading and Viewing

 

Continue Reading

It’s all in your head, literally! – Seizures versus Psychogenic Non-epileptic Seizures

It’s all in your head, literally! – Seizures versus Psychogenic Non-epileptic Seizures

Resident Clinical Pearl (RCP) May 2019

Allyson Cornelis – PGY2 FMEM Dalhousie University, Saint John NB

Copyedited by Renee Amiro

Reviewed by Dr. David Lewis

 


 


 

Background

When patients present with seizure like activity it can be difficult to distinguish true seizure/epilepsy from psychogenic non- epileptic seizures (PNES; also known as pseudoseizures). This task is made more difficult by the fact that 10-30% of patients with PNES can have true epilepsy as well4. The risks associated with diagnosing a psychogenic non-epileptic seizure as true seizure are mainly associated with administration of anti-epileptic drugs during both acute episodes and chronically, with the potential for associated side effects3-4,6. The most severe of these include sedation and even intubation if large enough doses are administered during an acute seizure episode. Additionally, there is added cost to both the patient and the healthcare system for continued use of medications and hospital admissions/investigations.

The underlying mechanism for PNES is believed to be psychiatric in origin, often attributed to conversion disorders, and patients are often not aware of their seizure like behaviours.


 

Risk factors for PNES include:

  1. childhood trauma
  2. PTSD
  3. depression
  4. anxiety
  5. personality disorders
  6. female gender

The challenge remains distinguishing between true seizures and PNES. There are various historical features and seizure characteristics that can assist in differentiating the two, though no one feature is confirmatory for seizure.


 

Distinguishing between PNES and true seizure3-8

Sign/symptom Seizure PNES
Eyes *open Closed, resist forced opening by examiner

 

*Fluttering

Seizure onset *abrupt Gradual
Awareness during seizure Not aware * awareness during episode
Influence of the presence of others Does not change seizure *May intensify or alleviate

 

activity may only occur/be triggered by the presence of others

Seizure activity Generalized tonic clonic

 

Synchronous

 

Stereotyped (first stiff and in extension, then develops synchronous clonic activity)

May be asynchronous, asymmetrical, waxing and waning

Thrashing/violent

Pelvic thrusting

Post ictal *Confusion May recall events during their apparent unresponsive event
head One sided Side to side head turning during event
**incontinence common occasional
***Tongue biting Common, may be severe, usually on SIDE of tongue Occasional, rare to be severe, may be on tip of tongue or the lip
Post ictal corneal reflex impaired normal
Post ictal babinksi upgoing downgoing
Hand drop test negative Positive (patient moves hand away from face)
Response to sternal rub/nail bed pressure Usually nonresponsive May stop seizing, withdraw from stimuli
****Vital signs Desaturation more likely

Ictal apnea

Ictal bradycardia

 

 

 

*represents elements found to be most useful in distinguishing PNES and ES8

** incontinence has little utility in distinguishing between PNES and true seizure5

*** lateral tongue biting was 100% specific for true seizure vs 38% sensitivity and 75% specificity for any type of tongue bite5

****prospective trial7


 

Lab Values

No lab value has proven consistently useful for confirming seizure versus PNES.

A note on Prolactin:

The American Academy of Neurology released guidelines in 2005 recommending the use of prolactin following a seizure event2.

  1. Best when drawn 10-20 minutes after the event and can be used to differentiate between PNES and true seizure
  2. If >6 hours later prolactin should be at baseline levels
  3. Cannot be used to differentiate seizure from syncope
  4. Not applicable in status epilepticus or repetitive seizures

 

Bottom Line: 

  1. Challenging to differentiate between PES and true seizure and some patients can have both!
  2. No definitive distinguishing measure but eye opening, abrupt seizure onset, and confused post-ictal state can help point toward true seizure.
  3. A normal prolactin is more helpful in ruling out seizure while an elevation is non-specific and cannot be used to confirm seizure.

 

References

  1. Abubakr A, Wambacq I. Diagnostic value of serum prolactin levels in PNES in the epilepsy monitoring unit. Neurol Clin Pract. 2016 Apr; 6(2): 116–119.
  2. Graham L. AAN releases guidelines for the use of serum prolactin assays in diagnosing epileptic seizures. Am Fam Physician. 2006. Apr; 73(7): 1284.
  3. Huff JS, Murr N. Seizure, Pseudoseizures. [Updated 2018 Oct 27]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2018 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK441871/
  4. Mellers JDC. The approach to patients with “non-epileptic seizures.” Postgrad Med J. 2005 Aug;81(958):498-504.
  5. Nowacki T, Jirsch JD. Evaluation of the first seizure patient: Key points in the history and physical examination. 2017 Jul;49:54-63. doi: 10.1016/j.seizure.2016.12.002. Epub 2016 Dec 8.
  6. Panayiotopoulos CP. The Epilepsies: Seizures, Syndromes and Management. Oxfordshire (UK): Bladon Medical Publishing; 2005. Chapter 1, Clinical Aspects of the Diagnosis of Epileptic Seizures and Epileptic Syndromes. Available from: https://www.ncbi.nlm.nih.gov/books/NBK2609/
  7. Pavlova M, Abdennadher M, Singh K, Katz E, Llewellyn N, Zarowsly M, et al. Advantages of respiratory monitoring during video- EEG evaluation to differentiate epileptic seizures from other events. Epilepsy Behav. 2014 Mar; 32: 142–144.
  8. Syed Tu, LaFrance WC Jr, Kahriman ES, Hasan SN, Rajasekaran V, Gulati D, et al. Can semiology predict psychogenic nonepileptic seizures? A prospective Ann Neurol.2011 Jun;69(6):997-1004
Continue Reading