COVID-19 – SJRH and New Brunswick

This post is provided as an information resource specifically for HealthCare Professionals within the Saint John Region and New Brunswick Emergency Departments

This post is updated regularly

SJRHEM COVID-19 Pages


COVID-19

New Brunswick Public Health – Link

Trauma New Brunswick Program

WorkSafe New Brunswick


Academic Activity – Dal, DMNB, Residents, News, Cancellations


Staff Wellness

 


What is COVID-19

  • A novel betacoronavirus first reported in Wuhan, China on December 31st 2019
  • Symptoms for the novel coronavirus are similar to those for influenza or other respiratory illnesses.
  • New Brunswick Case Definition – see below– Note this continues to evolve
  • Current assumptions are that spread is via droplet and/or fomite to face
  • Infection Prevention and Control = Contact and Droplet precautions

COVID-19 – SOURCES OF INFORMATION

SJRHEM GRAND ROUNDS

 


SJRHEM Activity During the Pandemic


NB Health Screening Tool and Referral forms to Community Assessment Centres – 27 May 2020 

For community referral for COVID-19 screening and testing:

Referral Form – Combined Referral and Order Form

FAX Number = 506 462-2040

 


Horizon Screening Questions – May 29

Download pdf

 


Self-Isolation Information Leaflet for Patients

Self-Isolate and Alternative Self-Isolate Leaflet

Self Management COVID

 

 


 

COVID-19 Testing – Public Health Advice and Viral Swabs 

Summary of Current Guidance (May 26)

“Every New Brunswicker should remain vigilant,” said Dr. Jennifer Russell, chief medical officer of health. “Please continue to limit your close contacts to prevent the chance of spreading the virus, especially to those who are more vulnerable to complications of COVID-19. Although community transmission has not been confirmed, it is important to be aware that it remains a possibility.”

Up-to-date information about COVID-19, including the latest data on confirmed cases and laboratory testing in New Brunswick is available online.

New Brunswick is currently in Phase 3 (Yellow) of the COVID-19 recovery. Information on public health recovery phases, measures and guidelines is available online.

Dr. Jennifer Russell, chief medical officer of health, announced that testing would now be recommended for people exhibiting at least two of the following five symptoms:

  • fever above 38°C or signs of fever;
  • a new cough or worsening chronic cough;
  • sore throat;
  • runny nose;
  • headache:
  • New onset fatigue;
  • New onset muscle pain;
  • Diarrhea;
  • Loss of sense of taste or smell; and
  • In children, purple markings on fingers or toes

Those who are exhibiting at least two of these symptoms are advised to immediately self-isolate and contact 811 or their family physician for further direction. Symptoms can range from relatively mild (runny nose and sore throat) to severe such as difficulty breathing.

Summary of Current Guidance  (April 2):

The COVID-19 pandemic is rapidly evolving around the world and within Canada. At variable points in the last few weeks, many parts of Canada including Quebec have started seeing community transmission. This had led to additional concern and control measures applied to travel outside of the province. In addition, New Brunswick is now also entering the community transmission phase.

Because of these dynamics, we will be transitioning from focusing on identifying cases imported into the province as a control measure to focusing testing priorities in our province on protecting our most vulnerable populations/settings and maintaining critical health system capabilities.

Given this transition, the following are key points when clinically evaluating patients (virtually or in person) and deciding on testing:

  • Conduct a clinical assessment – clinical case definition still includes fever/history of fever and/or new onset/exacerbation of chronic cough. Other symptoms may include headache, sore throat or coryza.
    • Test those with moderate to severe symptoms (such as signs of pneumonia, dyspnea, blood O2 saturation <94%) including those who require hospitalization.
    • Recommend testing patients with risk factors such as age 60 +, hypertension, cardiovascular disease, chronic respiratory disease, diabetes, and cancer.
    • People living in crowded settings or limited capacity to self-isolate due to same

Assessment centers will be testing all referrals moving forward, and not providing secondary screening, so please ensure referrals have been clinically assessed appropriately, virtually or in person, prior to completing a referral form.

  • Test Priority groups (even with mild symptoms) – to maintain the integrity of the health care system and prevent transmission in clinical and other vulnerable group settings
    • Symptomatic health care professionals, such as physicians, nurse practitioners, nurses, pharmacists, laboratory technologists, Ambulance NB, first responders, emergency medical dispatchers, Extra Mural program
    • Staff in hospitals, nursing homes, and other institutional or group living settings with direct patient care/contact
    • Patients/residents in institutional and group living settings with vulnerable populations (including within RHA, long term care, shelters, correctional facilities, adult residential facilities)
  • Consider and inquire about exposure criteria (travel outside New Brunswick or close contact/group exposure setting (ie gathering, work setting), either within the last 14 days), but absence of such no longer excludes a patient from testing. Identification of exposure risks and clusters remains a critical public health strategy in managing COVID-19 even in the context of community transmission.
  • There are no specific directives to NOT test certain individuals or groups of individuals at this time, continue to use your professional judgement but please be aware that the situation may change quickly in the coming days to weeks, depending on capacity.
  • Full Document Here – April 2
  • 5 Hospitals across NB, only SJRH in R2
  • 5 per day of those being discharged
  • 5 per day of those being admitted
  • Use pre labeled ‘sentinel swab’
  • Fever or Cough but NO travel or contact hx

 

How to Collect NP Swab

 


Case Definition – New Brunswick

based on the Canada Public Health  –  NB Interim national case definition  – March 24

Person under investigation (PUI)

A person with fever and/or cough who meets the exposure criteria and for whom a laboratory test for COVID-19 has been or is expected to be requested.

Probable

A person:

  • with fever (over 38 degrees Celsius) and/or new onset of (or exacerbation of chronic) cough
    AND
  • who meets the COVID-19 exposure criteria
    AND
  • in whom laboratory diagnosis of COVID-19 is inconclusive,negative (if specimen quality or timing is suspect), or
    positive but not confirmed by the National Microbiology Laboratory (NML)

Confirmed

A person with laboratory confirmation of infection with SARS-CoV-2 as a result of nucleic acid amplification testing (NAAT).

 

SJRHEM ADVICE – 19 March 2020

Consider any patient who presents with an Influenza Like Illness – irrespective of above case definition as being suspicious for COVID-19 and take appropriate PPE precautions.


Exposure Criteria

In the 14 days before onset of illness, a person who:

  • Traveled to an affected area i.e. anyone who travelled outside New Brunswick. OR
  • Had close contact with a person with acute respiratory illness who has been to an affected area (anyone who travelled outside NB within 14 days prior to their illness onset) OR
  • Had laboratory exposure to biological material (e.g. primary clinical specimens, virus culture isolates) known to contain COVID-19.

Close contact = A close contact is defined as a person who provided care for the patient, including healthcare workers, family members or other caregivers, or who had other similar close physical contact or who lived with or otherwise had close prolonged contact with a probable or confirmed case while the case was ill.


Affected Areas

Public Health Canada Affected Area List

UPDATEAll travel outside New Brunswick


 

 

 

Continue Reading

SHoC Network – Sonography in Hypotension and Cardiac-Arrest

The Sonography in Hypotension and Cardiac-Arrest (SHoC) Network is an international group of clinicians and researchers committed to advancing the evidence around the use of Point of Care Ultrasound (PoCUS) in critically ill patients.

The group evolved from a research network established by the International Federation for Emergency Medicine (IFEM) Ultrasound Interest Group, involving several PoCUS leaders from several international emergency medicine organizations.

The SHoC Network has been instrumental in initiating several research projects, as well as producing clinical guidelines. Further details are shown below.

Publications

The SHoC-ED study 2018 (SHoC-ED1) Link  Download

The SHoC systematic review of PoCUS in cardiac arrest Link  Download

The IFEM SHoC Consensus guidelines Link  Download

The SHoC-ED3 study – PoCUS vs No PoCUS in cardiac arrest Link  Download

The SHoC-ED-ECG study – does ECG predict cardiac activity? Link  Download

The initial SHoC study – clinical basis for protocol development Link  Download

Current Projects

The SHoC-ED2 study – PoCUS and ECG in cardiac arrest

The SHoC systematic review of PoCUS in hypotension

IFEM Documents and links

SHoC Guidelines link

IFEM PoCUS curriculum link

Network members and contributors include:

Paul Atkinson (Chair; 1,2,3),
David Lewis (1,2,3),
James Milne (4), 
Hein Lamprecht (5),
Jacqueline Fraser (1),
James French (1,2,3),
Laura Diegelmann (5,6),  
Chau Pham (7),
Melanie Stander (5),
David Lussier (7),
Ryan Henneberry (8),  
Michael Howlett (1,2,3),
Jay Mekwan (1,2,3),
Brian Ramrattan (1,2,3) ,
Joanna Middleton (1,2,3),
Niel van Hoving (5),  
Mandy Peach (1),
Luke Taylor (1),  
Tara Dahn (8),
Sean Hurley (8),
K. MacSween (8),
Lucas Richardson (8),  
George Stoica (9),
Samuel Hunter (10),
Paul Olszynski (11),
Nicole Beckett (12),
Elizabeth Lalande (13),
Talia Burwash-Brennan (14), K. Burns (15),
Michael Lambert (15),
Bob Jarman (16),
Jim Connolly (16),
Ankona Banerjee(1),
Michael Woo (14),
Beatrice Hoffmann (17),
Brett Nelson (18),
Vicki Noble (19)
1.     Department of Emergency Medicine, Dalhousie University, Saint John Regional Hospital, Saint John, New Brunswick, Canada
2.     Dalhousie Medicine New Brunswick, Saint John, New Brunswick, Canada
3.     Emergency Medicine, Memorial University, NL, Canada
4.     Family Medicine, Fraser Health Authority, Vancouver, BC, Canada
5.     Division of Emergency Medicine, University of Stellenbosch, Cape Town, South Africa
6.    Department of Emergency Medicine, University of Maryland Medical Center, Baltimore, USA
7.    Department of Emergency Medicine, University of Manitoba, Health Sciences Centre, Winnipeg, Manitoba, Canada
8.     Department of Emergency Medicine, Dalhousie University, QEII, Halifax, Nova Scotia, Canada
9.    Research Services, Horizon Health Network, Saint John Regional
Hospital, Saint John, New Brunswick, Canada
10. Faculty of Science, University of Ottawa, Ottawa, Ontario, Canada
11. Department of Emergency Medicine, University of Saskatchewan, Royal University Hospital, Saskatoon, SK, Canada
12. Department of Internal Medicine, Dalhousie University, Saint John
Regional Hospital, Saint John, New Brunswick, Canada
13. Department of Emergency Medicine, Université Laval, Québec, Québec, Canada
14. Department of Emergency Medicine, University of Ottawa, Canada
15. Department of Emergency Medicine, Advocate Christ Medical Center, Oak Lawn, IL, USA
16. Department of Emergency Medicine, Royal Victoria Infirmary, Newcastle upon Tyne, UK
17. Department of Emergency Medicine, Harvard Medical School, Beth Israel Deaconess Medical Center, USA
18. Department of Emergency Medicine, Icahn School of Medicine at Mount Sinai, The Mount Sinai Hospital, USA
19. Department of Emergency Medicine, Case Western Reserve University, University Hospital Cleveland Medical Center, USA
Continue Reading

EM Reflections – September 2020

Thanks to Dr. Paul Page for leading the discussions this month

All cases in this series are imaginary, but highlight learning points that have been identified as potential issues during rounds

Edited by Dr David Lewis 


Discussion Topics

  1. Incomplete Abortion

    • Unstable patients require staff to staff direct communication. OBGYN staff are always in house.
    • Patients remain responsibility of EM attending staff during and after consult. Transfer of care occurs at admission.
    • Be aware of the pitfalls of handover and possible need to reassess patient depending on clinical situation
  2. Cardiac Arrest – Pulmonary Embolism

    • Be aware of bias when seen patient in low acuity area
    • Alway consider and document a ‘top 3’ differential diagnosis
    • CPR must be extended after thrombolysis for suspected / confirmed PE
    • Consider following a standardized VTE pathway

 


Incomplete Abortion

Case

A 30yr old female presents with a profuse PV bleeding. She is 7 weeks pregnant by dates. She presents with abdominal pain, palor and is hypotensive and tachycardic. During fluid resuscitation, PV exam confirms the presence of blood and clots, the os is open and contains tissue. This is removed. The bleeding appears to stop. CBC identifies a low hemoglobin. The patient is transfused. What are the potential pitfalls in the management of this case?


 

Threatened abortion

Bleeding before 20 weeks’ gestation in the presence of an embryo with cardiac activity and closed cervix

Spontaneous abortion

Spontaneous loss of a pregnancy before 20 weeks’ gestation

 Complete abortion

Complete passage of all products of conception

 Incomplete abortion

Occurs when some, but not all, of the products of conception have passed

 Inevitable abortion

Bleeding in the presence of a dilated cervix; indicates that passage of the conceptus is unavoidable

 Septic abortion

Incomplete abortion associated with ascending infection of the endometrium, parametrium, adnexa, or peritoneum

 

First Trimester Bleeding – American Family Physician

Patient Information Leaflet

 

Management of Unstable Patients with 1st Trimester Bleeding

  • Urgent Consult to OBGYN
  • Management is similar to all unstable bleeding patients (resus room, monitors, vascular access, IV fluid +/- unmatched O neg blood, foley).
  • Investigate for DIC.
  • Tranexamic acid (1g IV) +/- oxytocin (40U by IV in 1L NS at 150cc/hour) can be given to slow bleeding before definitive management (in the OR).
  • **In an unstable patient with massive vaginal bleeding, a pelvic exam is indicated to identify a source and to look for and extract tissue found in the cervix.**
  • Any unstable patient who presents with 1st trimester bleeding and requires blood transfusion should be admitted, even if they stop bleeding in ED and the low Hb is corrected. There is potential for rebleed over next 24 hrs especially if products are retained.

Episode 23: Vaginal Bleeding in Early Pregnancy


Further Reading:

CanadiEM Frontline Primer – Early Pregnancy – First Trimester Bleeding

 

 

 


Cardiac Arrest – Pulmonary Embolism

Case

A 68 yr old male is brought into the emergency department with chest pain and shortness of breath. The patient is diaphoretic and hypotensive. They report a 5 day history of progressive leg swelling prior to these new symptoms. During the initial assessment the patients has a cardiorespiratory arrest. What is the differential diagnosis? What is the management of cardiac arrest when PE is suspected


 

A retrospective study published in Arch Intern Med  – May 2000, found that PE was found as the cause in 60 (4.8%) of 1246 cardiac arrest victims over an 8 year period.The initial rhythm diagnosis was pulseless electrical activity in 38 (63%), asystole in 19 (32%), and ventricular fibrillation in 3 (5%) of the patients. Thrombolysis resulted in significantly higher rate of ROSC, however survival to discharge was very low.

Diagnosis of PE in cases of cardiac arrest is often difficult to establish. Clinical suspicion of PE as a cause of cardiac arrest remains the key in timely diagnosis and treatment. In this study sudden dyspnea and syncope were the most suggestive reported symptoms. Deep vein thrombosis is known to be an important risk factor for PE, but clinical signs of deep vein thrombosis are rare and nonspecific. Right bundle-branch block was present in 67% of these cases, and this should induce a high suspicion for massive PE as cause of cardiac arrest. The authors recommend either transthoracic or transesophageal echocardiography be performed at the bedside in all cases to help establish the diagnosis of PE as the cause of a cardiac arrest.

 

 

Management of Cardiac Arrest in Suspected PE


  1. Commence CPR and follow the ACLS 2018 Algorithm
  2. Suspicion for PE as cause of cardiac arrest?
  3. Bedside Assessment to Increase Suspicion of PE as cause of cardiac arrest
  4. Thrombolysis
  5. VA ECMO + Interventional Radiology / Cardiovascular Surgery

1.  Commence CPR and follow the ACLS 2018 Algorithm

AHA ACLS 2018 Algorithms –  Update Highlights

2.  Suspicion for PE as cause of cardiac arrest?

  • Sudden onset dyspnoea or syncope prior to cardiac arrest
  • Right ventricular strain, new RBBB or other PE suggestive findings on ECG immediately prior to cardiac arrest
  • Initial non-shockable rhythm
  • History of immobilization prior to cardiac arrest (recent surgery, travel, injury)
  • History of thromboembolism
  • History of recent cancer diagnosis and treatment
  • Known hypercoagulation condition (e.g. Factor V Leiden)
  • No history of cardiac disease
  • Age less than 50yrs
  • Female
  • Pregnancy or Birth Control
  • Clinical signs of recent DVT (swollen leg, history of swollen/painful leg)

Improving identification of pulmonary embolism-related out-of-hospital cardiac arrest to optimize thrombolytic therapy during resuscitation

3.  Bedside Assessment to increase likelihood of PE as cause of cardiac arrest

  • Clinical exam for signs of DVT
  • Clinical assessment to exclude other reversible causes of cardiac arrest (5H’s and 5T’s)
  • DVT PoCUS
  • Transthoracic Echo PoCUS – RV dilatation, TV regurge, visible clot, dilated IVC (must not delay CPR)
  • Transesophageal Echo PoCUS – RV dilatation, TV regurge, visible clot, dilated IVC (superior images, does not interfere with CPR)

 

4.  Thrombolysis

An retrospective study published in Chest in 2019 analysed thrombolysis in PE related out-of-hospital-cardiac arrest. They found that thrombolysis was associated with increased 30 day survival but that a good neurological outcome was rare and not significantly improved. This 2019 systematic review and meta-analysis concluded that systematic thrombolysis during CPR did not improve hospital discharge rate.

Despite a weak evidence base, both the European Resuscitation Council (ERC) as well as the American Heart Association (AHA) have recommend the use of fibrinolytic therapy when PE is either known or suspected as the cause of cardiac arrest.

AHA Recommendations – in refractory cardiac arrest where PE has either been confirmed or is suspected, thrombolysis is a reasonable emergency treatment option:

  • Alteplase 50mg peripheral IV bolus
  • Option to repeat the bolus at 15 mins
  • Continue CPR for 30-60 minutes after lytic administration

EMCrit 261 – Thrombolysis during Cardiac Arrest

 

5.  VA ECMO + Interventional Radiology / Cardiovascular Surgery

Interventional and surgical procedures cannot be performed during CPR.

Several studies have concluded that ECMO can be beneficial in patients with PE related cardiac arrest

Extracorporeal membrane oxygenation in life-threatening massive pulmonary embolism

Use of extracorporeal membrane oxygenation in patients with acute high-risk pulmonary embolism: a case series with literature review

Resuscitation of prolonged cardiac arrest from massive pulmonary embolism by extracorporeal membrane oxygenation

Massive Pulmonary Embolism as a Cause of Cardiac Arrest: Navigating Unknowns in Life After Death

 

The consensus seems to be that in order to see benefit from the use of ECMO to bridge patients with massive PE / cardiac arrest a protocolized approach is required, including a standby ECMO team and predetermined pathways.

 


Further Reading

Submassive & Massive PE

 

Continue Reading

Fascia Iliaca Nerve Block

Hip Broke? Hip Block. Use of the fascia iliaca nerve block for analgesia in hip fractures.

Resident Clinical Pearl (RCP) July 2020

Luke Edgar, BScH MD

PGY1 Family Medicine Integrated Emergency Medicine

Dalhousie Saint John

 

Reviewed by Dr. David Lewis


Background

Hip fractures are a common and painful injury diagnosed and treated in the emergency department, with elderly patients representing the majority of cases. Advanced age, comorbidities, and increased sensitivity to side effects from systemic analgesia all pose challenges to achieving adequate pain control.1,2 Additionally, NSAID use in the elderly is frequently contraindicated due renal, cardiac, and gastrointestinal comorbidities as well as drug interactions. In elderly patients, both undertreated pain and opioid analgesia can precipitate delirium.3

Regional nerve blocks for the indication of hip and femoral neck fractures have been shown to reduce pain and need for IV opiates.1 Contraindications include infection over the injection site, patient refusal, and allergy to local anesthetic. Additionally, patients at risk for compartment syndrome (such as those with a concomitant ipsilateral tibial plateau fracture) should be selected cautiously as they may not reliably have increased pain after block.4

There are three main techniques described for regional nerve blocks to provide analgesia for hip and femoral neck fractures.1

  • Fascia Iliaca Nerve Block: Insert a needle through the fascia lata and fascia iliaca, to infiltrate dilute local anesthetic into the fascial compartment which diffuses to block the femoral, lateral femoral cutaneous, and obturator nerves.
  • Femoral Nerve Block: At the level of the femoral triangle, infiltrate local anesthetic around the femoral nerve.
  • 3-in-1 Femoral Nerve Block: At the level of the femoral triangle, infiltrate local anesthetic around the femoral nerve while applying pressure distal to the injection site, encouraging local anesthetic to track superiorly to block the femoral, lateral femoral cutaneous, and obturator nerves.

Figure 1. Lower limb peripheral nerve sensory distribution.5 Circled in red are the nerves blocked using the fascia iliaca technique. Cutaneous distribution of the obturator nerve is not depicted but consists of a small area on the proximal medial thigh.


Technique

Table 1. Supplies and equipment for performing a fascia iliaca nerve block

Table 2. Steps to complete a fascia iliaca nerve block6

 


Figure 2. Video demonstrating the sonoanatomy of the right femoral triangle. From lateral to medial, femoral nerve, artery and vein (NAVel), labeled with yellow, red, and blue arrows, respectively.


Figure 3. Sonoanatomy of the right femoral triangle, transverse view for the fascia iliaca nerve block.


Figure 4. Sonoanatomy of the right femoral triangle demonstrating ultrasound-guided needle placement using an in-plane technique. Note two pops should be felt as the needle crossed the two fascial planes.


 

For a visual review of these steps and ultrasonographic landmarks, please see the following videos and webpage by EM Ottawa, 5 Minute Sono, and NYSORA:

EM Ottawa

5 Minute Sono

NYSORA

Ultrasound-Guided Fascia Iliaca Block


 

Complications

Serious complications of this procedure are rare, but present.

  • Local Anesthetic Systemic Toxicity (LAST) as a complication of inadvertent intravenous or intra arterial anesthetic injection.7
    1. Incidence is 8 – 30 in 100,0008
    2. Manifestations typically occur within 20 minutes of injection (although onset can be as late as >1 hr) and are primarily neurologic and cardiovascular in nature. Neurologic effects include perioral numbness, metallic taste, mental status change or anxiety, muscle twitches and visual changes, followed by loss of consciousness and seizure. Cardiovascular effects are hypertension and tachycardia followed by arrhythmias, bradycardia, hypotension and cardiac arrest.
    3. Treatment is with intravenous lipid emulsion therapy (Intralipid 20%) 1.5 mL/kg bolus followed by 0.25 mL/kg/min, Maximum total dose 12 mL/kg. Contact your poison control centre if you suspect LAST.
    4. Prior to performing a fascia iliaca block, confirm availability of intralipid within your department to be used in the event of this rare complication.
  • Femoral Nerve injury secondary to intrafascicular injection
    1. Incidence 2-30/100,0008
    2. Most symptoms of paresthesias, numbness, and weakness resolved after several months in the event of this complication8
  • Other complications include infection, nerve block failure, injury secondary to numbness/weakness of limb, and allergy to the local anesthetic.

 

Take Home Message

Femoral nerve blocks are recommended for hip and femoral fractures to reduce pain and opioid analgesia requirements. Given that poor pain control and opioid analgesia are risk factors for delirium in elderly patients, hip blocks may also reduce rates of delirium (further study required). A fascia iliaca block with 20 cc of 0.5% bupivacaine is a well described technique with very few contraindications. To reduce the risk of complications, these blocks should be completed using sterile technique under ultrasound guidance with the help of an assistant. Hip broke? Hip block.

 


 

References

  • Ritcey B, Pageau P, Woo M, Perry J. Regional Nerve Blocks For Hip and Femoral Neck Fractures in the Emergency Department: A Systematic Review. CJEM 2015;18(1):37-47.
  • Hwang U, Richardson LD, Sonuyi TO, Morrison RS. The effect of emergency department crowding on the management of pain in older adults with hip fractures. J Am Geriatr Soc. 2006;54(2):270-5.
  • Morrison RS, Magaziner J, Gilbert M, et al. Relationship between pain and opioid analgesics on the development of delirium following hip fracture. J Gerontol A Biol Sci Med Sci 2003;58(1):76-81.
  • Erak M, EM Ottawa Grand Rounds. Ah, that feels better! The Use of Nerve Blocks in the ED. 2016. https://emottawablog.com/2016/10/ah-that-feels-better-the-use-of-nerve-blocks-in-the-ed/. Accessed July 25, 2020.
  • Gray H. 1918. Nerve supply of the leg. Anatomy of the Human Body. Image retrieved from https://en.wikipedia.org/wiki/Nerve_supply_of_the_human_leg. Accessed July 24, 2020
  • Woo M. How to perform the Ultrasound Guided Femoral Nerve Block. EM Ottawa. 2018. https://youtu.be/_OugsPA4rxY Accessed July 25, 2020.
  • Warren L, Pak A. Local anesthetic systemic toxicity. UpToDate. 2019. uptodate.com/contents/local-anesthetic-systemic-toxicity. Accessed July 25, 2019.
  • Helman, A, Morgenstern, J, Spiegel, R, Lee, J. Regional Nerve Blocks for Hip Fractures. Emergency Medicine Cases. August, 2018. https://emergencymedicinecases.com/regional-nerve-blocks-hip-fractures/. Accessed July 25, 2020.

 

Continue Reading

Trauma Reflections – June 2020

Thanks to Dr. Andrew Lohoar and Sue Benjamin for leading the discussions this month


 

Major points of interest:

 

A) How are we doing with calling Trauma Codes for qualifying cases?

In the past year, for cases qualifying for trauma team activation, the rate of calling ‘Trauma Codes’ has fallen to 66%.

If a Trauma Code was called, RN trauma note use increased to 85% and time to disposition to an ICE setting was significantly decreased.

 

Please review the attached updated simplified activation criteria – notable changes are:

  • Removal of minor head injuries without signs or symptoms on anticoagulants under “D”
  • Addition of pulseless extremity under “C”


B) ECMO in trauma

MVC victim survived after being submerged x 20 minutes – CPR (with LUCAS) and then managed further with ECMO.

Key to successful outcome will be EARLY recognition of cases that may benefit and early alert/consultation with CV surgery.

Best evidence for ECMO is for re-warming severe hypothermic patients.

 


 C) Significant MOI + spine pain = CT

Obtaining spine x-rays in cases with moderate probability of bony injury inevitably leads to another trip down the long hallway to visit our diagnostic imaging colleagues (and delay to definitive diagnosis).

If your patient needs a CT, order a CT.

See attached consensus guideline.


D) Pelvic binders are not used to ‘treat’ the pelvic fracture

They are used to treat any hemodynamic instability caused by the fracture. If a patient is stable or has a pelvic fracture that is not likely causing significant bleeding, the binder can likely be loosened or removed.

A pelvic binder can exacerbate some fractures, such as lateral compression fractures. Orthopedics should be assisting with this decision.

 


E) That intubated transfer patient just waved at me!

There is a reason trauma transfers should be assessed on arrival.

Consultants are expected to attend to these patients ASAP, but timely review by emergency MD is expected to assess/treat priorities (ventilatory status, analgesia need, sedation etc.)

 


F) The patient is on warfarin…how quaint!

Do you remember when anticoagulants could be reversed? In the event you do meet a trauma patient on warfarin, early correct dosing of vitamin K and PCC may be crucial.

Review of such charts in past 2 years has our dosing all over the map.

Easy dosing regime is:

 

Vitamin K – 10mg IV and PCC – 2000IU if INR unknown,

If INR known: PCC – 3000IU if INR > 5, PCC – 2000IU if INR 3-5, PCC – 1000 if INR < 3.

 


G) Trauma checklist:

“SJRH ED Trauma Process Checklist” is in trauma note package in room 19 and is a very useful prompt (see below).


H/ High MOI Knee injuries are at risk for deterioration in department

Vascular status may change, compartment syndrome may develop.

Consider repeating physical exams, early orthopedic consultation and low threshold for CT with vascular studies.

 


I/ Where is this guy bleeding?

Maybe he isn’t. Failure to respond to resuscitation suggests continued hemorrhage or non-hemorrhagic cause for shock. With neurogenic shock, loss of sympathetic tone may cause hypotension without tachycardia or vasoconstriction.

Consideration should be made to start vasopressors in patients with spinal cord injury with persistent hypotension after attempted resuscitation and no evidence of hemorrhagic shock. Aim for a SBP of 90-100. Avoid overzealous fluid administration.

 


J/ NB Trauma Traumatic Brain Injury Consensus statement – May 2020

See attached

Download (PDF, 1.32MB)

Continue Reading

EM Reflections – June 2020

Thanks to Dr Joanna Middleton for leading the discussions this month

Edited by Dr David Lewis 


Discussion Topics

  1. Antiviral Toxicity

    • Always adjust dosing in patients with renal impairment
  2. Necrotising Fasciitis

    • Difficult clinical diagnosis
    • Should be on the differential for all soft tissue infections
    • Delayed definitive care always results in poor outcomes
  3. Epidural Abscess

    • Thorough detailed neurological examination required
    • Isolated leg weakness is rare in Stroke
    • Progressive development of symproms and mixed UMN/LMN signs suggests spinal cord compression.

 


Antiviral Toxicity

Case

A 70yr old male presents with a typical zoster rash in the left L1 dermatome. He has a past medical history of chronic renal insufficiency. He is started on Valacyclovir 1000mg TID. He represents 3 days later with hallucinations including a feeling that he was occupying a dead body. What is the differential diagnosis?


 

Varicella Zoster Encephalitis vs Valacyclovir Toxicity

VZV and antiviral toxicity can present with similar symptoms

Two main risk factors increase the risk for VZV

  • age greater than 50 years old
  • immunocompromised due to reduced T cell-mediated immunity

The main risk factor for antiviral toxicity is renal insufficiency

Differentiation

  • Timing
    • Toxicity presents within 1-3 days of starting drug (vs 1-2 weeks)

 

  • Symptoms – both can present with confusion and altered LOC
    • Encephalitis – fever, HA, seizures, more likely with Trigeminal nerve (V1) or disseminated zoster
    • Toxicity – Visual hallucinations, dysphasia, tremor/myoclonus
    • Toxicity – Cotard’s syndrome…

Cotard’s Syndrome

“le délire des négations”

(delirium of negation)

https://en.wikipedia.org/wiki/Cotard_delusion

  • Described in 1880 by neurologist Jules Cotard
    • “patient usually denies their own existence, the existence of a certain body part, or the existence of a portion of their body”
  • Seen in schizophrenia, psychosis and…
  • ….acyclovir toxicity (felt to be due to metabolite CMMB (9-carboxymethoxymethylguanine) crossing BBB)

Further Reading

Varicella Zoster Encephalitis case report and outline

Valacyclovir Toxicity case report and outline

Cotard’s Syndrome

Drug Dosing in Chronic Kidney Disease

 

 

 


Necrotising Soft Tissue Infections (NSTI)

Case

A 28yr old female presents pain, redness and swelling over the right thigh. She has a past medical history of type 2 diabetes. She is managed as an outpatient with intravenous ceftriaxone q24hrs. Her symptoms failed to respond on follow up. What is the concern now? Are there any red flags? What condition needs to be considered in patients with soft tissue infections that fail to respond to antibiotics?


NSTI first described by Hippocrates 5th century BC

“[m]any were attacked by the erysipelas all over the body when the exciting cause was a trivial accident…flesh, sinews, and bones fell away in large quantities…there were many deaths.”

 

Necrotizing fasciitis is characterized by rapid destruction of tissue, systemic toxicity, and, if not treated aggressively, gross morbidity and mortality. Early diagnosis and aggressive surgical treatment reduces risk; however, it is often difficult to diagnose NF, and sometimes patients are treated for simple cellulitis until they rapidly deteriorate.

Infection typically spreads along the muscle fascia due to its relatively poor blood supply; muscle tissue is initially spared because of its generous blood supply.

Infection requires inoculation of the pathogen into the subcutaneous tissue or via hematogenous spread.

Classification

  • Type 1 – polymicrobial – older/diabetics/EtOH/IC/PVD
  • Type 2 – monomicrobial – usually group A beta-hemolytic strep (often hematogenous) – healthy people of all ages

Early signs and symptoms of NSTI are often identical to those seen with cellulitis or abscesses potentially making the correct diagnosis difficult

‘Classic’ Signs / Symptoms

(1) the presence of bullae
(2) skin ecchymosis that precedes skin necrosis
(3) crepitus
(4) cutaneous anesthesia
(5) pain out of proportion to examination
(6) edema that extends beyond the skin erythema
(7) systemic toxicity
(8) progression of infection despite antibiotic therapy or rapid progression

First 4 are “hard” signs

  • Erythema (without sharp margins; 72 percent)
  • Edema that extends beyond the visible erythema (75 percent)
  • Severe pain (out of proportion to exam findings in some cases; 72 percent)
  • Fever (60 percent)
  • Crepitus (50 percent)
  • Skin bullae, necrosis, or ecchymosis (38 percent)

Streaking lymphangitis favours the diagnosis of cellulitis over necrotizing fasciitis

Diagnosis

  • There is no set of clinical findings, lab test results and even imaging that can definitively rule out necrotizing fasciitis
    • “Surgical exploration is the only way to establish the diagnosis of necrotizing infection”.
    • “Surgical exploration should not be delayed when there is clinical suspicion for a necrotizing infection while awaiting results of radiographic imaging other diagnostic information”
  • But what if you really aren’t sure?  Or if you get pushback?
  • CT is probably the best test – esp Type 1 (gas forming)
    • Findings – gas, fluid collections, tissue enhancement, inflammatory fascial changes
  • Finger test…
    • “After local anesthesia, make a 2-3 cm incision in the skin large enough to insert your index finger down to the deep fascia. Lack of bleeding and/or “dishwater pus” in the wound are very suggestive of NSTI. Gently probe the tissues with your finger down to the deep fascia. If the deep tissues dissect easily with minimal resistance, the finger test is + and NSTI can be ruled in.”  (emergencymedicinecases.com)
  • But what about PoCUS????

PoCUS

Diagnosis of Necrotizing Faciitis with Bedside Ultrasound: the STAFF Exam

Findings – “STAFF”

ST – subcutaneous thickening
A – air
FF – fascial fluid

Ultrasound video demonstrating Subcutaneous Thickening, Air, and Fascial Fluid (STAFF).

 

Soft tissue ultrasound findings are significantly different when compared to normal soft tissue ultrasound

Bottom Line: Limited data, but basically PoCUS is not sufficient to rule-in or rule out, but might be helpful in raising suspicion level for necrotising fasciitis for physicians who routinely scan all soft tissue infections.

 

LRINF Score

The LRINEC (Laboratory Risk Indicator for Necrotizing Fasciitis) Score: A Tool for Distinguishing Necrotizing Fasciitis From Other Soft Tissue Infections

Laboratory Risk Indicator for Necrotizing Fasciitis (LRINEC) Score.  2004, retrospective – score >6 negative predictive value of 96.0% and a positive predictive value of 92%.

 

A validation study looking only at patients with pathology-confirmed necrotizing fasciitis showed that a LRINEC score cutoff of 6 points for necrotizing fasciitis only had a sensitivity of 59.2% and a specificity of 83.8%, yielding a PPV of 37.9% and NPV of 92.5%. However, the study did show that severe cellulitis had a LRINEC Sscore ≥ 6 points only 16.2% of the time.  Therefore, the available evidence suggests that the LRINEC score should not be used to rule-out NSTI.

Bottom Line: Doesn’t rule-out…… or rule-in

 

Suggested Algorithm – UpToDate

 

EM Cases Review

BCE 69 Necrotizing Fasciitis

 

Further Reading

Necrotizing fasciitis – Can Fam Physician. 2009 Oct; 55(10): 981–987.

 


Epidural Abscess

Case

A 40yr old female presents with left leg weakness. She has a complex recent past medical history including recently diagnosed pneumonia, previous renal colic and type 2 diabetes. Could this be a stroke? What are the other causes of leg weakness? How does the examination differentiate UMN from LMN lesions? When considering a diagnosis of epidural abscess what investigation is required? How soon should it be performed?


Only 4% of Strokes present with isolated or predominant leg weakness. (Brain. 1994 Apr;117 ( Pt 2):347-54.
doi: 10.1093/brain/117.2.347)

Common mechanisms of weakness:

  • Upper motor neuron lesions (Stroke, Tumour, Spinal Cord Compression, etc)
  • Lower motor neuron lesions ( Neuropathy, Disc Prolapse, Spinal Cord Compression, etc)
  • Neuromuscular junction lesions (Myasthenia, etc)
  • Neuropathies (Guillain-Barre, etc)
  • Muscle (Myopathies, etc)

Full review on Muscle Weakness from the Merck Manual here

Weakness that becomes severe within minutes or less is usually caused by severe trauma or stroke; in stroke, weakness is usually unilateral and can be mild or severe. Sudden weakness, numbness, and severe pain localized to a limb are more likely caused by local arterial occlusion and limb ischemia, which can be differentiated by vascular assessment (eg, pulse, color, temperature, capillary refill, differences in Doppler-measured limb BPs). Spinal cord compression can also cause paralysis that evolves over minutes (but usually over hours or days) and is readily distinguished by incontinence and clinical findings of a discrete cord sensory and motor level.

Unilateral upper motor neuron signs (spasticity, hyperreflexia, extensor plantar response) and weakness involving an arm and a leg on the same side of the body: A contralateral hemispheric lesion, most often a stroke

Upper or lower motor neuron signs (or both) plus loss of sensation below a segmental spinal cord level and loss of bowel or bladder control (or both): A spinal cord lesion

 

Epidural Abscess

Spinal epidural abscess (SEA) is a severe pyogenic infection of the epidural space that leads to devastating neurological deficits and may be fatal. SEA is usually located in the thoracic and lumbar parts of the vertebral column and injures the spine by direct compression or local ischemia. Spinal injury may be prevented if surgical and medical interventions are implemented early. The diagnosis is difficult, because clinical symptoms are not specific and can mimic many benign conditions. The classical triad of symptoms includes back pain, fever and neurological deterioration.

Spinal Epidural Abscess: Common Symptoms of an Emergency Condition – A Case Report

 

  • 75% are a delayed diagnosis
    • Usually hematogenous spread, usually S. aureus
  • Diagnosis
    • CRP has an sensitivity of 85%, specificity of 50%
    • MRI is gold standard
    • CT with contrast 2nd choice

 

Further Reading

Spinal epidural abscess

Episode 26: Low Back Pain Emergencies

 

 

Continue Reading

EM Reflections – May 2020

Thanks to Dr Paul Page for leading the discussions this month

Edited by Dr David Lewis 


Discussion Topics

  1. Seizure disorder and safe discharge 

    • Consider risk factors for adverse outcome of discharge for all patients with recurrent seizure disorder
    • Use a checklist
  2. Competency and Capacity

    • Multidisciplinary consultation is paramount in deciding capacity
    • Special circumstances include vulnerable adults and pregnancy
  3. Testicular Torsion

    • Time = Testicle viability
    • Do not delay definitive management

Seizure disorder and safe discharge 

Case

A patient presents with recurrent seizures. They have a past medical history of schizophrenia and mental health delay. Following appropriate ED management with complete resolution of seizures and full recovery of the patient – what is the recommended disposition?


Seizure disorder is a common presentation to the Emergency Department. This EM Cases post provides an excellent summary for the ED approach to resolved seizures:

Ep 132 Emergency Approach to Resolved Seizures

 

ED approach to resolved seizures – Summary pdf


In this study – Ethanol withdrawal or low antiepileptic drug levels were implicated as contributing factors in 177 (49%) of patients. New‐onset seizures were thought to be present in 94 (26%) patients. Status epilepticus occurred in only 21 (6%) patients.

73% of patients were discharged.

 

 

 


Disposition

Most authors recommend admission for patients presenting with FIRST Seizure Episode. Patients with a past medical history of recurrent seizure disorder are more likely to be discharged than admitted.

However – this EBMedicine article cites an incidence of 19% seizure recurrence rate within 24 hours of presentation, which decreased to 9% if patients with alcohol related events or focal lesions on CT were excluded. They suggest, that at present, there is insufficient evidence to guide the decision to admit. They recommend this decision be tailored to the patient, taking into consideration the patient’s access to follow-up care and social risk factors (eg, alcoholism or lack of health insurance). Patients with comorbidities, including age > 60 years, known cardiovascular disease, history of cancer, or history of immunocompromise, should be considered for admission to the hospital.

 

Considerations For Safety On Discharge

Patients and their families should be counseled and instructed on basic safety measures to prevent complications (such as trauma) during seizures. For example, patients should be advised to avoid swimming or cycling following a seizure, at least until they have been reassessed by their neurologist and their antiepileptic therapy optimized, if needed. A particularly important point for seizure patients is education against driving. Although evidence remains controversial on this issue, there is general agreement that uncontrolled epileptic patients who drive are at risk for a motor vehicle crash, with potential injury or death to themselves and others. For this reason, most states do not allow these patients to drive unless they have been seizure-free on medications for 1 year. According to population survey data, 0.01% to 0.1% of all motor vehicle crashes are attributable to seizures


Competency and Capacity

Case

A young female patient with a history of polysubstance drug abuse presents with a psychotic episode. She refuses treatment. What are the competency and capacity implications? She is also pregnant. Does this change the the competency and capacity implications?


This LitFL post provides and excellent outline for Competency and Capacity in the ED:

Capacity and Competence

This article published by the RCPSC provides a useful outline from a Canadian perspective – with the following objectives.

  1. To clarify the role of decisional capacity in informed consent
  2. To discuss problems associated with decisional capacity and addiction

RCPSC – Decisional Capacity

 


 



Capacity in Pregnancy

Recommendations from the American College of Obstetricians and Gynecologists

On the basis of the principles outlined in this Committee Opinion, the American College of Obstetricians and Gynecologists (the College) makes the following recommendations:

  • Pregnancy is not an exception to the principle that a decisionally capable patient has the right to refuse treatment, even treatment needed to maintain life. Therefore, a decisionally capable pregnant woman’s decision to refuse recommended medical or surgical interventions should be respected.
  • The use of coercion is not only ethically impermissible but also medically inadvisable because of the realities of prognostic uncertainty and the limitations of medical knowledge. As such, it is never acceptable for obstetrician–gynecologists to attempt to influence patients toward a clinical decision using coercion. Obstetrician–gynecologists are discouraged in the strongest possible terms from the use of duress, manipulation, coercion, physical force, or threats, including threats to involve the courts or child protective services, to motivate women toward a specific clinical decision.
  • Eliciting the patient’s reasoning, lived experience, and values is critically important when engaging with a pregnant woman who refuses an intervention that the obstetrician–gynecologist judges to be medically indicated for her well-being, her fetus’s well-being, or both. Medical expertise is best applied when the physician strives to understand the context within which the patient is making her decision.
  • When working to reach a resolution with a patient who has refused medically recommended treatment, consideration should be given to the following factors: the reliability and validity of the evidence base, the severity of the prospective outcome, the degree of burden or risk placed on the patient, the extent to which the pregnant woman understands the potential gravity of the situation or the risk involved, and the degree of urgency that the case presents. Ultimately, however, the patient should be reassured that her wishes will be respected when treatment recommendations are refused.
  • Obstetrician–gynecologists are encouraged to resolve differences by using a team approach that recognizes the patient in the context of her life and beliefs and to consider seeking advice from ethics consultants when the clinician or the patient feels that this would help in conflict resolution.
  • The College opposes the use of coerced medical interventions for pregnant women, including the use of the courts to mandate medical interventions for unwilling patients. Principles of medical ethics support obstetrician–gynecologists’ refusal to participate in court-ordered interventions that violate their professional norms or their consciences. However, obstetrician–gynecologists should consider the potential legal or employment-related consequences of their refusal. Although in most cases such court orders give legal permission for but do not require obstetrician–gynecologists’ participation in forced medical interventions, obstetrician–gynecologists who find themselves in this situation should familiarize themselves with the specific circumstances of the case.
  • It is not ethically defensible to evoke conscience as a justification to attempt to coerce a patient into accepting care that she does not desire.
  • The College strongly discourages medical institutions from pursuing court-ordered interventions or taking action against obstetrician–gynecologists who refuse to perform them.
  • Resources and counseling should be made available to patients who experience an adverse outcome after refusing recommended treatment. Resources also should be established to support debriefing and counseling for health care professionals when adverse outcomes occur after a pregnant patient’s refusal of treatment.

Further Reading:

Ethically Justified Clinically Comprehensive Guidelines for the Management of the Depressed Pregnant Patient

How Do I Determine if My Patient has Decision-Making Capacity?

 


Testicular Torsion

Case

A 12 year old boy presents with scrotal discomfort in the early hours of the morning. The department is very busy and the waiting time to be seen is 4 hours. What triage category is this presenting complaint? If a diagnosis of torsion is considered, how quickly should definitive management be initiated?


Ramachandra et al. demonstrated through multivariate analysis of the factors associated with testicular salvage, that duration of symptoms of less than 6 h was a significant predictor of testicular salvage. They found that the median duration of pain was significantly longer in patients who underwent orchiectomy versus orchidopexy. Similar findings were seen with respect to time to operating room from initial presentation. They concluded that time to presentation is in fact the most important factor in determining salvageability of the testicle in testicular torsion. If surgical exploration is delayed, testicular atrophy will occur by 6 to 8 h, with necrosis ensuing within 8 to 10 h of initial presentation. Salvage rates of over 90% are seen when surgical exploration is performed within 6 h of the onset of symptoms, decreasing to 50% when symptoms last beyond 12 h. The chance of testicular salvage is less than 10%, when symptoms have been present for over 24 h

Factors influencing rate of testicular salvage in acute testicular torsion at a tertiary pediatric center.

Ramachandra P, Palazzi KL, Holmes NM, Marietti S

West J Emerg Med. 2015 Jan; 16(1):190-4.

[PubMed]

 

 

This study (Howe et al). confirmed the relationship between duration of torsion and testicle viability and also found a relationship between the degree of torsion


 

 

AAFP Review of Testicular Torsion: Diagnosis, Evaluation, and Management

 

 

 

 

 

 

Continue Reading

Lung PoCUS – Podcast

Lung PoCUS in Pediatric Emergency Medicine – Podcast

PoCUS Fellowship Clinical Pearl (RCP) May 2020

Dr. Mandy Peach (Emergency Physician and Dalhousie PoCUS Fellow, Saint John, NB, Canada)

Reviewed by Dr. David Lewis

 


Extract:

“My name is Mandy Peach and I am Emergency Physician at the Saint John Regional Hospital in Saint John, New Brunswick. I’m currently completing a PoCUS Fellowship and a pediatric rotation through the IWK Emergency Department in Halifax…….

What is the evidence for the use of PoCUS and diagnosing pediatric pneumonia. Well trained PoCUS Physicians can identify pneumonia with a sensitivity of 89% and a specificity of 94%, compared community-acquired pneumonia chest x-ray has a sensitivity of 69% and a specificity of 100%, if you see it great…. but what about early bacterial pneumonia and this case PoCUS has the upper hand, and if you consider consolidations behind the heart that can be visualized on PoCUS and obscured on chest x-ray – PoCUS 2  chest x-ray zero. So clearly it’s a useful tool to have when trying to differentiate between bacterial pneumonia that requires treatment and viral causes that would indicate conservative management. So how do we actually ultrasound the lungs…..the first step is to make the kid comfortable scan them in a position of comfort for example and their parents arms what the patient touch the ultrasound gel or the probe so it’s less of a scary thing maybe play their favourite music or YouTube video on the background or give them their favourite or snack do you want to choose a high frequency linear probe and scanning the longitudinal plane ……….”

 

Listen to the Podcast for some useful tips on performing and interpreting lung ultrasound in the pediatric population.

Continue Reading

Ear Foreign Body Removal

Ear Foreign Body Removal

Resident Clinical Pearl (RCP) May 2020

Dr. Sultan Alrobaian (PEM Fellow and Dalhousie PoCUS Fellow, Saint John, NB, Canada)

Reviewed by Dr. David Lewis


Introduction

  • Most patients with ear Foreign Bodies (FB) are children, adults can also present with ear FB
  • The most common objects removed include beads, pebbles, tissue paper, small toys, popcorn kernels, and insects
  • Diagnosis is often delayed because the causative event is usually unobserved or the symptoms are nonspecific
  • Most of the patients with ear FBs were asymptomatic at presentation, other patients presented with otalgia, bleeding from the ear, otorrhea, tinnitus, hearing loss, a sense of ear fullness or symptoms of otitis media
  • Successful removal depends on several factors, including location of the foreign body, type of material and patient cooperation
  • Visualization of a foreign body on otoscopy confirms the diagnosis, the other ear and both nostrils should also be examined closely for additional foreign bodies.

Clinical Anatomy

© 2020 UpToDate, Inc. and/or its affiliates. All Rights Reserved.


Equipment

  • Multiple options exist for removal of external auditory canal foreign bodies
  • Which piece of equipment to use will be influenced by the type of FB, the shape of the FB, the location of the FB and the cooperativeness of the patient

Timing

  • The type of foreign body determines the timing for removal
  • Button batteries, live insects and penetrating foreign bodies warrant urgent removal

Indications for consultation or referral to a specialist

  • Button battery
  • Potentially penetrating foreign bodies
  • Foreign body with evidence of injury to the external ear canal (EAC), tympanic membrane, middle ear, vestibular symptoms or marked pain

Technique


1 – Irrigation

  • This technique is used for small inorganic objects or insects
  • Irrigation is often better tolerated than instrumentation and does not require direct visualization
  • Contraindicated in patients with tympanostomy tubes, perforated tympanic membranes or button battery because the potential for caustic injury.
  • An angiocatheter or section of tubing from a butterfly syringe
  • Using body temperature water, retract the pinna, and squirt water superiorly in the external auditory canal, behind the FB

© 2020 UpToDate, Inc. and/or its affiliates. All Rights Reserved.


2 – Instrumentation under direct visualization

  • Instrumentation can be painful and frequently warrants procedural sedation in young children or other uncooperative patients
  • General anesthesia may be required to ensure safe removal
  • Restrain if needed for safety

  • Commonly used pieces of equipment are curettes, alligator forceps, and plain forceps. Other equipment options include using a right angle hook, balloon catheter, such as a Fogarty catheter

  • Used in conjunction with the operating head of an otoscope
  • The pinna should be retracted, and the FB visualized
  • When using forceps, the FB can be grasped and removed

  • Both curettes and right angle hooks should be gently maneuvered behind the FB and rotated so the end is behind the FB, which can then be pulled out

© 2020 UpToDate, Inc. and/or its affiliates. All Rights Reserved.


3 – Suction

  • This should be performed with a soft suction tipped catheter that has a thumb controlled release valve
  • Insert the suction against the FB under direct visualization and then activate the suctions and remove the FB

© 2020 UpToDate, Inc. and/or its affiliates. All Rights Reserved.


4 – Cyanoacrylate

  • Apply a small amount of cyanoacrylate or skin glue to the blunt end of a cotton-tipped applicator
  • Insert it against the FB under direct visualization and hold in place until the glue dries
  • Slowly and carefully withdraw


5 – Insect removal

  • The first step is to kill the insect with mineral oil followed by lidocaine
  • Once the insect is neutralized, it can be removed by any of the above methods


SUMMARY

  • Foreign bodies of EAC frequently occur in children six years of age and younger
  • Patients with foreign bodies of the EAC are frequently asymptomatic
  • Button batteries , penetrating foreign bodies or injury to the EAC should undergo urgent removal by an otolaryngologist.
  • With adequate illumination, proper equipment, and sufficient personnel, many EAC foreign bodies can be removed

REFERENCES

1.Lotterman S, Sohal M. Ear Foreign Body Removal. [Updated 2019 Jun 5]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2020 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK459136/

2.https://www.uptodate.com

3.Heim S W, Maughan K L. Foreign bodies in the ear, nose, and throat. Am Fam Physician. 2007;76(08):1185–1189. [PubMed] [Google Scholar]

4.Awad AH, ElTaher M. ENT Foreign Bodies: An Experience. Int Arch Otorhinolaryngol. 2018;22(2):146–151. doi:10.1055/s-0037-1603922

Continue Reading

PoCUS in COVID

Point of Care Ultrasound (PoCUS) during the Covid-19 pandemic – Is this point of care tool more efficacious than standard imaging?

Resident Clinical Pearl (RCP) May 2020

Dr. Colin Rouse– (PGY-3  CCFP Emergency Medicine) | Dalhousie University

and Dr. Sultan Alrobaian (Dalhousie PoCUS Fellow, Saint John, NB, Canada)

Reviewed by Dr. David Lewis

 


Case

A 70 year of woman present to the ED with a history of fever, cough and dyspnoea. After a full clinical assessment (with appropriate PPE), Lung PoCUS is performed.


Introduction

The Covid-19 Pandemic has created the largest international public health crisis in decades. It has fundamentally changed both societal norms and health care delivery worldwide. Changes have been implemented into resuscitation protocols including ACLS to prioritise appropriate donning of personal protective equipment (PPE) and consideration of resuscitation appropriateness prior to patient contact.1 Equipment has been removed from rooms to limit cross-contamination between patients. In this Pearl we will explore why PoCUS should not be discarded as an unnecessary tool and should be strongly considered in the assessment of a potential Covid Patient.

Disclaimer: Given the novel nature of CoVid-19 there is a lack of RCT data to support the use of PoCUS. These recommendations are based solely on expert opinion and case reports until superior evidence becomes available.


Potential Benefits of PoCUS

  • Lung PoCUS has increased sensitivity compared to conventional lung X-ray for known lung pathologies such as CHF4 and Pneumonia5 with similar specificities. Given that Pneumonia is the most common complication of Covid-19 it may help diagnose this complication in patients who have a normal CXR.
  • PoCUS can be performed by the assessing physician limiting the unnecessary exposure to other health care providers such and Radiologic Technologists and other staff in the diagnostic imaging department.
  • Lung PoCUS is low cost, repeatable and available in rural settings
  • Once pneumonia is diagnosed other potential complications can be sought including VTE and cardiovascular complications.

The assessment of the potential Covid-19 patient.

First one must consider the potential risk for coronavirus transmission at each patient encounter and ensure proper PPE2 for both oneself and the PoCUS device3.


Lung Ultrasound in the potential Covid-19 Patient

Technique

  • Appropriate level PPE
  • A low-frequency (3–5 MHz) curvilinear transducer
  • Set Focus to Pleural Line and turn off machine filters (e.g THI) to maximize artifacts
  • Scanning should be completed in a 12-zone assessment6
    • 2 anterior windows
    • 2 lateral windows
    • 2 posterior windows

Findings7

Mild Disease

  • Focal Patchy B-lines in early disease/mild infection (May have normal CXR at this point)
  • Areas of normal lung

 

Moderate/Severe Disease – Findings of bilateral Pneumonitis

  • B-lines begin to coalesce (waterfall sign)
  • Thickened and irregular pleura
  • Subpleural Hypoechoic consolidation      +/- air bronchograms

 

Other Covid-19 Pearls

  • Large/Moderate Pleural Effusion rarely seen in Covid-19 (consider another diagnosis) – Small peripleural effusions are common in COVID
  • The virus has a propensity for the base of the posterior lung windows and it imperative to include these views in your assessment.


Example COVID PoCUS Videos8

Confluent B Lines and small sub pleural consolidation

 

Patchy B lines and Irregular pleura

 

Irregular pleura

 

Air Bronchogram


CT & ultrasonographic features of COVID-19 pneumonia9

It has been noted that lung abnormalities may develop before clinical manifestations and nucleic acid detection with some experts recommending early Chest CT for screening suspected patients.10 Obviously there are challenges with this recommendation mainly regarding feasibility and infection control. A group of researchers in China compared Ultrasound and CT findings in 20 patients with COVID-19. Their findings are summarized in the table below:

Their conclusion was that ultrasound has a major utility for management of COVID-19 due to its safety, repeatability, absence of radiation, low cost and point of care use. CT can be reserved for patients with a clinical question not answered by PoCUS. CT is required to assess for pneumonia that does not extend to the pleura. Scatter artifact from aerated lung obscures visualization of deep lung pathology with PoCUS. When PoCUS is sufficient it can be used to assess disease severity at presentation, track disease evolution, monitor lung recruitment maneuvers and prone positioning and guide decisions related to weaning of mechanical ventilation.


Learning Points

  • Lung PoCUS is helpful in the initial assessment of the suspected or known COVID19 Patient
  • Lung PoCUS may reveal pathology not visible on CXR
  • Lung PoCUS can provide insight into COVID19 disease severity
  • Lung PoCUS is a useful tool to track disease progression in COVID19

Lung PoCUS in COVID Deep Dive

Deep Dive Lung PoCUS – COVID 19 Pandemic

 

 


References

  1. Edelson, D. P., Sasson, C., Chan, P. S., Atkins, D. L., Aziz, K., Becker, L. B., … & Escobedo, M. (2020). Interim Guidance for Basic and Advanced Life Support in Adults, Children, and Neonates With Suspected or Confirmed COVID-19: From the Emergency Cardiovascular Care Committee and Get With the Guidelines®-Resuscitation Adult and Pediatric Task Forces of the American Heart Association in Collaboration with the American Academy of Pediatrics, American Association for Respiratory Care, American College of Emergency Physicians, The Society of Critical Care Anesthesiologists, and American Society of …. Circulation.
  2. COVID-19 – Infection Protection and Control. http://sjrhem.ca/covid-19-infection-protection-and-control/
  3. Johri, A. M., Galen, B., Kirkpatrick, J. N., Lanspa, M., Mulvagh, S., & Thamman, R. (2020). ASE Statement on Point-of-Care Ultrasound (POCUS) During the 2019 Novel Coronavirus Pandemic. Journal of the American Society of Echocardiography.
  4. Maw, A. M., Hassanin, A., Ho, P. M., McInnes, M., Moss, A., Juarez-Colunga, E., Soni, N. J., Miglioranza, M. H., Platz, E., DeSanto, K., Sertich, A. P., Salame, G., & Daugherty, S. L. (2019). Diagnostic Accuracy of Point-of-Care Lung Ultrasonography and Chest Radiography in Adults With Symptoms Suggestive of Acute Decompensated Heart Failure: A Systematic Review and Meta-analysis. JAMA network open, 2(3), e190703. https://doi.org/10.1001/jamanetworkopen.2019.0703
  5. Balk, D. S., Lee, C., Schafer, J., Welwarth, J., Hardin, J., Novack, V., … & Hoffmann, B. (2018). Lung ultrasound compared to chest X‐ray for diagnosis of pediatric pneumonia: A meta‐analysis. Pediatric pulmonology, 53(8), 1130-1139.
  6. Wurster, C., Turner, J., Kim, D., Woo, M., Robichaud, L. CAEP. COVID-19 Town Hall April 15: Hot Topics in POCUS and COVID-19. https://caep.ca/covid-19-town-hall-april-15-hot-topics-in-pocus-and-covid-19/
  7. Riscinti, M. Macias, M., Scheel, T., Khalil, P., Toney, A., Thiessen, M., Kendell, J. Denver Health Ultrasound Card. http://www.thepocusatlas.com/covid19
  8. Images obtained from. Ultrasound in COVID-19. The PoCUS Atlas. http://www.thepocusatlas.com/covid19
  9. Peng, Q., Wang, X. & Zhang, L. Findings of lung ultrasonography of novel corona virus pneumonia during the 2019–2020 epidemic. Intensive Care Med (2020). https://doi.org/10.1007/s00134-020-05996-6
  10. National Health Commission of the people’s Republic of China. Diagnosis and treatment of novel coronavirus pneumonia (trial, the fifth version)[EB/OL]. (2020-02-05)[2020-02-06]. http://www.nhc.gov.cn/yzygj/s7653p/202002/3b09b894ac9b4204a79db5b8912d4440.shtml
Continue Reading

Ten Best Practices for Improving Emergency Medicine Provider-Nurse Communication

 

On behalf of all our Emergency Physicians, we want to thank the most valuable asset we have….. our super-skilled, resourceful, caring ……. ER Nurses

 

How can we improve our communication?


 

Thanks to Dr. Mekwan for recommending this article

 

Communication between nurses and emergency medicine (EM) providers is critical to the safe and effective care of patients in the emergency department. Understanding interactions and information needs among clinical team members can not only aid in communication, but can also provide a framework for training and the design of workflow and health information technology systems.

 

Top Ten Best Practices for Improving Communication in the ED

 

  1. Communicate diagnostic assessment, plan of care and disposition plan to other team members as early as possible. Update the team of any changes to the plan.
  2. Communicate pending tasks in the patient’s care as well as information regarding changes or holdups to tasks or orders.
  3. Communicate details regarding proactive diagnostic testing and therapeutic interventions (e.g. placing IV and drawing bloodwork prior the physician evaluation in patients with abdominal pain, obtaining urine HCG in women of childbearing age).
  4. Don’t assume everyone has a shared understanding: recognize that you might have unique access to information and make sure that it is shared in a timely manner.
  5. Notify providers of any critical or unexpected changes in vital signs or patient status. Did the patient develop new tachycardia, fever, or hypotension? Is the patient more somnolent or getting more agitated?
  6. Do not assume electronic orders substitute for verbal communication.
  7. Use asynchronous communication for lower priority items to aid in prioritization (e.g. leaving a note for a physician requesting they sign-off on non-urgent orders).
  8. Adapt communication strategies based on team members’ experience level and existing relationships. For example, a new nurse may need extra time and guidance while orienting.
  9. Adapt communication strategies to the physical layout of the ED, especially in those facilities where nurses and physicians may have workstations out of sight from one another or where it is not obvious which staff members are on different care teams.
  10. Use strategies that exploit provider experience level regardless of role hierarchy. Perhaps we all remember being a fresh resident physician (finally a doctor!) and realizing that we knew very little compared to the seasoned charge nurse.

 


 

 

 

Continue Reading

Superficial can also be Deep – Superficial Thrombophlebitis

Superficial Thrombophlebitis – an approach to diagnosis and management

Resident Clinical Pearl (RCP) May 2020

Dr. Devon Webster – PGY2 FMEM Dalhousie University, Saint John NB

Reviewed by Dr. David Lewis

 


Case

Claude Virchow is a 59-year-old gentleman who presents to your emergency department complaining of pain to his medial right leg. 2 days ago, he bumped his knee and since then, has developed a hard, rope-like, tender swelling along the inside of his knee. On exam, you see the following image and he winces as you palpate along the indurated cord.

Figure 1 Source

In the next bed over, is a 39-year-old man presents with similar induration along his antecubital fossa bilaterally. He has a history of IVDU and was seen a week prior for the same problem. He is back as the indurated areas seem to be extending and his pain is worsening despite abstinence from injection and adherence to conservative measures. There are no signs of infection.

What are your recommendations?


 

What is superficial thrombophlebitis?

  • Thrombus formation in a superficial vein with associated inflammation of the vessel wall.
  • Typically involves the lower extremities with greater saphenous vein involvement in 60-80% of cases
  • Less commonly, affects the superficial veins of the upper extremities, neck (external jugular) or causes ‘Mondor’s syndrome,’ a superficial thrombophlebitis of the anterior chest wall.

 

Why does it matter?

  • In patients with superficial venous thrombosis (ST) >5cm in length, approximately 20% have a concomitant DVT and 4% have a PE
  • Some patients with ST may be candidates for anticoagulation

 

Anatomy review:

  • Lower extremity:
    • Superficial venous system: primarily comprised of the greater and lesser saphenous veins (aka long and short saphenous veins)
    • Deep venous system: anterior tibial, peroneal and femoral veins.
    • The saphenofemoral junction (SFJ) forms the connection between the deep and superficial systems.
  • Upper extremity:
    • Superficial: digital, metacarpal, cephalic, basilic and median veins
    • Deep: radial, ulnar, brachial, axillary, subclavian veins

Figure 2 Source


 

Figure 3 Source


 

Risk Factors:

  • The same as VTE! E.g. malignancy, trauma, hormone therapy, etc.
  • Varicose veins account for up to 90% of cases of lower limb ST and risk factors for varicose veins (e.g. lack of physical activity, venous stasis) increase the risk of ST.
  • Risk factors suggesting concomitant DVT when ST is also present: age >60, male sex, bilateral ST, presence of systemic infection, absence of varicose veins.
  • Mondor’s: often associated with breast reconstruction

 

History & Physical:

  • The patient may describe a painful, erythematous, swollen, hard vein that is tender to touch.
  • Inquire about symptoms and looks for signs suggestive of DVT, PE or secondary infection.
  • Low grade fever may be present in uncomplicated ST but higher fevers and erythema extending beyond the borders of the vein suggest suppurative ST.
  • Ask about risk factors as per VTE though may be idiopathic.
  • Note that a D-Dimer is not a helpful tool for distinguishing ST from DVT

 

Which patients with superficial thrombophlebitis require ultrasonography?  

  • Lower limb:
    • US recommended for MOST patients
    • If clinical picture is not obvious
    • If suspected concomitant DVT
    • ST is above the knee, especially if above mid-thigh
    • ST is in the upper calf near perforating veins in the popliteal fossa
  • Upper limbs:
    • Patients with ST of veins approaching the deep venous system (basilic, cephalic veins) that do not respond to conservative measures or have progression of their symptoms should undergo duplex US to evaluate for clot extension.
  • Mondor’s (anterior chest): US rarely required

 

Key points on ultrasound report:

  • For lower extremities, assess proximity to the saphenofemoral junction (SFJ) and the length of the ST. Specifically determine if ST is >5cm in length or if <3cm proximity to the SFJ.
  • Rule out DVT
  • Rule out other causes of pain (e.g. popliteal cyst, muscle mass)

 

Treatment:

  • General measures:
    • Non-pharmacologic
      • Elevate extremity
      • Apply continuous, moist heat x72 hrs
      • Remove any offending solution or catheter
      • Encourage early mobility
    • Pharmacologic
      • Tylenol, NSAIDs
      • Topical NSAIDs
      • Do not give antibiotics unless signs of infection.
  • Upper extremity ST
    • Anticoagulation?
      • Limited data to guide management!
      • Some experts would suggest consideration of anticoagulation for patients with ST that are at risk for DVT (e.g. ST in veins in close proximity to deep veins).
      • May consider anticoagulation for pts with persistent symptoms despite conservative mgmt. (e.g. ongoing excessive pain and swelling) as anticoagulation is effective in alleviating symptoms, especially if ST precipitated by malignancy.
      • However, when considering treatment, important to note that PE from upper extremity ST is rare!

 

  • Mondor’s (chest well) ST
    • Self-limited. Conservative management.

 

  • Lower limb ST (see algorithm below):
    • ST within 3 cm of saphenofemoral junction: therapeutic dose of anticoagulation for 3 months
      • g.: rivaroxaban 15mg PO BID x3 weeks, followed by 20 mg OD, warfarin, full dose LMWH
    • ST >/5cm in length but >3 cm from saphenofemoral junction: prophylactic doses of anticoagulation
      • g.: rivaroxaban 10mg PO OD, dalteparin 5,000U SC q24hrs
    • ST <5cm, >3 cm from saphenofemoral junction but with severe symptoms or risk factors for extension: prophylactic doses of anticoagulant for up to 45 days
    • ST <5cm, >3cm from saphenofemoral junction, no severe symptoms or risk factors: conservative treatment

Figure 4 Approach to lower limb superficial thrombophlebitis. Source: Thrombosis Canada

 


 

Disposition & Prognosis:

  • Patients with extensive or recurrent ST should be referred to a specialist
  • Isolated lower limb uncomplicated ST not affecting the great or small saphenous veins and no risk factors for DVT: organize repeat clinical examination in 7-10 days to assess for resolution or progression. If symptoms or exam worsens, order ultrasound.
  • Resolution of ST may take up to 2-6 weeks.

 

Bottom Lines:

  • Superficial thrombophlebitis may be associated with DVT in up to 20% of cases and PE in up to 4%.
  • Ultrasound should be organized for most patients with lower limb ST and for some patients with upper extremity ST (progressive symptoms and concern for extension to deep venous system)
  • Patients with lower limb ST within 3 cm of the saphenofemoral junction should be treated with full dose anticoagulants. Those with ST >5 cm in length but farther from the SFJ, with severe symptoms or at high risk for clot extension should be treated with lower doses of anticoagulant.
  • Consider anticoagulants for patients with upper extremity ST with severe persistent symptoms not responding to conservative measures to alleviate their discomfort.
  • Patients with uncomplicated lower limb ST should have follow up organized within 7-10 days.

 

References:

  1. Chopra, V. Uptodate. Catheter-related upper extremity venous thrombosis [internet]. 2019 Nov 14. Available from: https://www.uptodate.com/contents/catheter-related-upper-extremity-venous-thrombosis?search=Catheter%20related%20upper%20extremity%20venous%20thrombosis&source=search_result&selectedTitle=1~150&usage_type=default&display_rank=1
  2. Scovell, S. Uptodate. Phlebitis and thrombosis of the superficial lower extremity veins [internet]. 2019 Oct 3. Available from: https://www.uptodate.com/contents/phlebitis-and-thrombosis-of-the-superficial-lower-extremity-veins?search=Phlebitis%20and%20thrombosis%20of%20the%20superficial%20lower%20extremity%20veins&source=search_result&selectedTitle=1~150&usage_type=default&display_rank=1
  3. Thrombosis Canada. Superficial Thrombophlebitis, Superficial Vein Thrombosis [internet]. 2019 Mar 25. Available from: https://thrombosiscanada.ca/clinicalguides/?search=superficial%20thrombophlebitis#
  4. Thrombosis Canada. Deep Vein Thrombosis (DVT): Treatment [internet]. 2016 May 19. Available from: http://thrombosiscanada.ca/wp-content/uploads/2016/05/3_Deep-Vein-Thrombosis-Treatment-2016May19-FINAL.pdf
  5. Mustonen, P. EBM Guidelines. Superficial venous thrombophlebitis [internet]. 2020 Mar 16. Available from: https://www.ebm-guidelines.com/ebmg/ltk.free?p_artikkeli=ebm00920
  6. Venes, D. Taber’s Medical Dictionary. Phlebitis [Internet]. Available from: https://www.tabers.com/tabersonline/view/Tabers-Dictionary/749144/all/phlebitis.
Continue Reading

An approach to removing hair tourniquets

Getting out of a hairy situation – an approach to removing hair tourniquets 

Resident Clinical Pearl (RCP) May 2020

Renee Amiro – PGY3 FMEM Dalhousie University, Saint John NB

Reviewed by Dr. Kavish Chandra

 

A two-month-old male presents with his mother to the emergency department with two tightly wound hairs around his fourth and fifth toes. He is visibly upset and crying excessively. His mother says that his toes looked like this when he woke up this morning. He is otherwise well and has had his two-month immunizations.

His toes look like this:

 

 


Hair tourniquet syndrome

Definition – a tightly wound hair, thread, rubber band that is wrapped around an appendage and causes impaired blood flow.

Why this is bad – the constriction causes edema which restricts venous blood flow causes more edema which then impedes arterial blood flow and that can cause ischemia and if left undetected could cause amputation.

Most common appendages involved – Toes, external genitalia, fingers

Most common presenting symptom – excessively crying young child or swollen appendage found by mom or dad.

 

Management

Goal is to remove the restricting band ASAP!

Remember to treat pain! Using emla gel on the digit prior to any manipulation and use other analgesics as you deem appropriate. Remember the use of sugar for pain management in babies.

In all management types- ensure you have gotten all of the hair and have released the constricted band completely.

  1. Try and unwind the hair!
  • Works best if caught early
  • You can use a cutting suture needle to try and get underneath the hair and release it.

 

  1. Depilatory Cream
  • Apply Nair to the affected toe and allow 2-8 minutes to see if the hair dissolves.
  • Should not be used on open wounds and can cause skin irritation.
  • Does not dissolve cotton, polyester or rayon threads.

 

  1. Dorsal Slit Procedure (for digits)
  • Do a slit on the dorsal surface along the long axis of the digit through the area of constriction down to the bone to ensure release of tourniquet.
  • Lateral aspect contains nerves and blood vessels and should be avoided. You may cut the tendon doing a dorsal slit along the long axis- but you won’t affect function of the digit.
  • Ensure that the patient has close follow up to ensure healing and complete resolution of the tourniquet.

 

The bottom line

  1. Think of this diagnosis and LOOK for it in a young child brought to the ED with “excessive crying”
  2. Ensure adequate pain management prior any invasive removal of the tourniquet.
  3. Move quickly down the list to the dorsal slit procedure (for digit) if deeply embedded hair with significant edema or tissue compromise.

 

Copyedited by Kavish Chandra

 

References

Lin, Michelle 2012. https://www.aliem.com/trick-of-trade-hair-tourniquet-release/

Fox, Sean 2015. https://pedemmorsels.com/hair-tourniquet/

Continue Reading