Elbow Injuries

EM Reflections April 2021 – Elbow Injuries

 

 

Thanks to Dr. Joanna Middleton for leading this month’s discussions.

All cases are imaginary but highlight important learning points.

Authored and copyedited by Dr. Mandy Peach

A 25 yo male presents to the ED with his R arm in a makeshift sling. He’s complaining of elbow pain post fall while trail running in a local park. He describes slipping downhill on some loose terrain and landing with his arm hyperextended behind him as he tried to grab a branch. He is otherwise healthy and takes no medications. His vital signs are within normal limits with the except of a HR of 102, which you attribute to pain. The nurse has placed an IV.

You begin your examination of the R elbow. You see significant swelling of the joint and some superficial abrasions. The joint does not feel warm to the touch. There is no overt bleeding.

Other than palpation for focal tenderness and assessing range of motion, what are some important tips for a focused elbow exam1?

Eliminating gravity when testing flexion/extension so pain is less likely to hinder your exam findings. To do this have the patient point their elbow at you, while the forearm is parallel to the floor and have them flex/extend in this plane2.

Remember to test for supination and pronation – this is also a key part of the elbow exam and assessing both with patient’s arms tucked into their sides can help reveal more subtle injuries. Asking the patient to point their thumbs up can make assessing ROM compared to the ‘normal’ side easier to see.

You examine your patient and they cannot fully extend the elbow, even after pain control. What is the significance of this3?

Your patient needs imaging. The ‘elbow extension test’ can help predict the likelihood of fracture. In both adult and pediatric patients presenting within 72 hours of injury, those who could not fully extend the joint had a 48% chance of fracture, while that percentage decreased to 2% if the patient could fully extend the joint.

How can supination and pronation be helpful in picking up on injury1?

Subtle injuries can be found such as radial head or neck fracture. This ROM brings the radial head out during examination.

An Essex-Lopresti fracture-dislocation is another potential injury: a fracture-dislocation injury involving the radial head (fracture) and DRUJ – distal radioulnar joint (dislocation)4. These are important to identify as they require immobilization with the patient’s limb in supination.

The patient has difficulty with supination and pronation secondary to pain. You are concerned for a radial head injury. On exam he has diffuse tenderness of the joint and you have difficulty identifying landmarks as they are lost – you are concerned about an elbow dislocation as well.

What are potential neurovascular injuries involved with such a significant elbow injury5?

Important neurovascular structures associated with the elbow joint are the brachial artery, radial artery, ulnar artery, median, radial, and ulnar nerve.

The most common injury to the elbow is radial head fractures. The mechanism is usually FOOSH or direct trauma5.

You proceed with a neurovascular exam. Radial and ulnar pulse are palpable, capillary refill is 2 seconds.

What is an easy way to remember the nerve testing for elbow injury1?

You complete your neurovascular exam and send the patient for XR’s. You suspect there will be significant injury.

You quickly review normal elbow anatomy on lateral XR with your learner on shift7.

You point out two important lines in the lateral view of the XR

  1. Anterior humeral line: A vertical running drawn on the anterior surface of humerus. This must run down to intersect middle 1/3rd of CAPITELLUM
  2. Radiocapitellar line : it runs through the central radius and passes the central capitellum on a normal image. Important: this rule applies to EACH image, so not only a purely lateral image

You also point out that that in the AP view the radiocapitellar line should also be drawn and should intersect the central capitellum.

By now your patient’s XR is up for review8.

First you notice the elbow luxation – neither your anterior humeral line or radiocapitellar line intersects the capitellum.
You also can see a radius head fracture.

What other injury should you be concerned about1?

After any proven or suspected radial head injury always look for the second injury. Here you have obvious luxation, but you should also examine the coranoid process and anterior ulna for any subtle irregularity indicating fracture. Coranoid fractures tend to be associated with elbow luxation and often indicate an unstable joint.

On history the mechanism of injury is FOOSH or hyperextension of the elbow.

The mechanism fits and your patient does have both radial head fracture and luxation. You examine the coranoid and notice that the trochlear is not completely smooth. You diagnose a coranoid fracture as well.

What is the significance of these injuries1?

This patient has the ‘terrible triad’ of the elbow.

  • Radial head/neck injury
  • Luxation of the elbow
  • Coranoid fracture

This requires orthopedic consultation immediately – it is an unstable joint. You reexamine neurovascular status again and confirm the limb is still perfused and intact before immobilization. You place the patient in a posterior long arm splint with the forearm in supination and discuss with orthopedics on call.

 

 

You pick up the next chart and there is another elbow pain. It looks like the patient was already sent for XR in triage and is now back and in the orthopedic room. This is a 16 yo female who was participating in an orienteering competition. She tripped while running on a tree root and sustained a FOOSH injury. She describes the grade being on a downward slope and felt her entire weight fall forward onto her wrist. She is otherwise healthy. Her vitals are within normal limits.

You initially examine the patient and see the following, what are the clues that this is a posterior elbow dislocation1,9?

When standing behind the patient you can see the olecranon sitting posteriorly behind the humerus.

You are palpating the elbow for tenderness – in the normal elbow the medial condyle, lateral condyle and olecranon should form a symmetrical triangle. Here they do not – this is suggestive of subluxation/dislocation of the elbow.

You assess neurovascular status and find no abnormalities.

What are the other types of dislocations? Which is most common10?

Posterior is the most common. 50% have associated fractures.

You look at the XR11:

This is a frank posterior dislocation – but, what are clues of subtle subluxations1?

“A smooth, symmetric clear space around the trochlea, similar to assessing the clear space of the ankle mortise.”

What about if your patient described a “popping sensation” during the injury and the XR appears normal1?

Sometimes patients can dislocate and  relocate before presentation to the ED. Although there is no bony injury the mechanism is associated with significant ligamentous injury and should be immobilized.

You prepare for sedation and elbow reduction. You consent the patient and the parent, perform an airway assessment and gather the team.

What are methods to reduce an elbow dislocation?

Before deciding to reduce ensure there are no vascular or neurological deficits and no open fracture/dislocation – this would require immediate orthopedic consultation10.

Your patient is neurovascularly intact and it is a closed dislocation.

Traction-Countertraction1

  1. The patient is seated sitting up
  2. Place the forearm in supination – this allows the trochlea to pass more easily over the coronoid process of the olecranon
  3. Elbow is flexed 30 degrees with an assistant immobilizing it and applying counter traction at the middle or distal end of the humerus
  4. Apply downward traction to the distal forearm

Doesn’t work? Try applying downward pressure at the mid-forearm and the olecranon posteriorly while maintaining in-line traction12

Still no luck1?

While standing at the posterior aspect of the humerus hook the fingers of both hands anterior to the condyles and put both thumbs on the olecranon at the junction with the triceps. Try and push the olecranon up over the trochlear.

Modified Simson12

  1. The patient is in a prone position with the affected arm handing over the side of the bed
  2. Slow downward force is applied on the wrist while the opposite hand attempts to guide the olecranon back into place.
  3. If a second provider is available they can manipulate the olecranon.

 

Which method works best?

I don’t think there is much evidence that one is better than the other! Traction-countertraction is the most commonly described method in the literature.

Working single coverage in a rural area with only one nurse who is doing cardiorespiratory monitoring and administering meds? The Modified Simson can be single provider. If the patient is compliant and not sedated then they can provide counter traction while holding the flexed elbow over the chest12.

 

Another option when you’re flying solo is the Leverage Technique12
1. Gently supinate the patients forearm
2. Interlock your fingers with the patients
3. Place your elbow against the distal potion of the patient’s biceps
4. Slowly draw the patient’s wrist into flexion while using your own elbow as a fulcrum.
5. Use your other hand to apply lateral or medial force as needed

One small study found this technique to be superior to traction-countertraction.

At the end of the day, elbow reductions can be tricky. Having more than one technique in your back pocket can be helpful.

 

You and your learner choose the traction-countertraction method and “clunk” – so satisfying.

How do you immobilize now1?

Immobilize at 90 degress of flexion with a padded backslab.

You arrange for ortho follow up – as this was a simple dislocation with no fracture you ensure the appointment is within 3 weeks as this is the maximal period the joint should be immobilized.

For complicated dislocations associated with fracture – ortho should see within 72 hours as they require ORIF.

The patient has recovered from sedation and is asking what to expect in terms of prognosis for this dislocation1.

In simple dislocations that are reduced and immobilized you advise the patient that they will be unable to extend beyond 30 degrees for 6 weeks, and that it may take up to 3 months before full extension is regained. Given that this is an athletic patient you advise her not to return to weight bearing exercises before 4 months unless directed safe by ortho in follow up.

 

 

You grab one last chart with your learner – surprise! It’s a 50 yo male with an elbow injury. He tripped while doing sprints as part of a work out and fell with arm fully extended in front of him. He is otherwise healthy and his vital signs are within normal limits.

On initial examination there is no obviously deformity. The limb is neurovascularly intact.

You palpate the elbow and there is tenderness over the radial head.

You ask the learner to palpate the radial head, they are unsure where. How do you help guide them1?

You describe the triangle between:
– The lateral aspect of the olecranon
– The lateral condyle (anterior to olecranon)
– Radial head

You also suggest examination in supination and pronation as this can bring out the radial head.

You remember your previous case of the terrible triad and go on to examine the coronoid – there is no concern of injury and the elbow doesn’t grossly appear dislocated.

You order XRs – what are some findings associated with radial head injury1?

  • Disruption of the surface of the radial head
  • Anterior sail sign
  • Posterior fat pad
  • Disruption of the radiocapitellar line

Your patient’s lateral XR13

You see both anterior sail sign and a posterior fat pad, so although no obvious fracture is seen of the radial head you diagnose a radial head fracture.

How long does this patient need to be immobilized for1?

Most fractures are not surgical. They are treated with a sling. Do not immobilize for more than 3 weeks or chronic elbow stiffness can ensue.

What if there was a visible fracture through the radius? How do you know which fractures will require ORIF and more urgent ortho evaluation1?

The 30-3-33 rule

30 degrees angulation
3 mm displacement of the fracture fragment
33% surface area of the radial head involved

References for further reading:

  1. Helman, A. Sayal, A. Dantzer, D. Ten Pitfalls in the Diagnosis and Management of Elbow Injuries. Emergency Medicine Cases. March, 2019. https://emergencymedicinecases.com/elbow-injuries. Accessed [date]
  2. https://www.hep2go.com/exercise_editor.php?exId=36147&userRef=gciaake
  3. Appelboam A, Reuben A D, Benger J R, Beech F, Dutson J, Haig S et al. Elbow extension test to rule out elbow fracture: multicentre, prospective validation and observational study of diagnostic accuracy in adults and children BMJ 2008; 337 :a2428 doi:10.1136/bmj.a2428
  4. https://www.startradiology.com/internships/orthopedics/elbow/x-elbow/index.html
  5. (2) Tintinalli, JE, Stapczynski JS, Ma OJ, Yealy D, Meckler GD, Cline DM. 9th ed. Tintinalli’s Emergency Medicine: A Comprehensive Study Guide. New York: McGraw-Hill.
  6. Cornelis, A (2017). Elb-‘ow’! Does my patient with an elbow injury require an x-ray? Resident Clinical Pearl. Emergency Medicine, Saint John. http://sjrhem.ca/rcp-elb-ow-patient-elbow-injury-require-x-ray/
  7. https://www.startradiology.com/internships/orthopedics/elbow/x-elbow/index.html
  8. https://www.orthobullets.com/trauma/1021/terrible-triad-injury-of-elbow
  9. https://litfl.com/elbow-dislocation/
  10. Paris (2016). Elbow Dislocation. Core EM. https://coreem.net/core/elbow-dislocation/
  11. Oppenheim, Osborn (2016). Posterior Elbow Dislocation. Journal of Education & Teaching of Emergency Medicine. DOI: https://doi.org/10.21980/J8X593
  12. Michael Gottlieb, Jessen Schiebout (2018). Elbow Dislocations in the Emergency Department: A Review of Reduction Techniques. The Journal of Emergency Medicine. Volume 54, Issue 6; Pages 849-854. ISSN 0736-4679 https://doi.org/10.1016/j.jemermed.2018.02.011.
  13. https://radiopaedia.org/articles/sail-sign-elbow-1

 

Continue Reading

PoCUS and Clavicle Fractures

Using PoCUS to diagnose clavicular fractures

Medical Student Clinical Pearl – May 2018

Danielle Rioux – Med III Class of 2019, Dalhousie Medicine New Brunswick 

Reviewed by Dr. Mandy Peach and Dr. David Lewis

Case: A 70 year-old man presented to the emergency department with pain in his left shoulder and clavicular region following a skiing accident. He slipped and fell on his left lateral shoulder while he was on skis at the ski hill. He has visible swelling in his left shoulder and clavicular region, and was not able to move his left arm.

On exam: The patient was in no sign of distress. He was standing and holding his left arm adducted close to his body, supporting his left arm with his right hand. There was swelling and ecchymosis in the left clavicle, mid-shaft region, with focal tenderness. On palpation, there was crepitation, tenderness, swelling, and warmth in this region. He was unable to move his left shoulder due to pain. His neurovascular exam on his left arm was normal. Auscultation of his lungs revealed normal air-entry, bilaterally and no adventitious sounds.

Point of Care Ultrasound (PoCUS): We used a linear, high-frequency transducer and placed it in the longitudinal plane on the normal right clavicle (see Image 1.), and the fractured left clavicle (see Image 2.). Image 3 shows the fractured clavicle in the transverse plane.

Image 1. PoCUS of normal right clavicle along the long axis of the clavicle (arrows depict the hyperechoic superficial cortex with deep acoustic shadowing).

Clip 1. PoCUS of normal right clavicle along the short axis of the clavicle. The transducer is moving from the lateral to medial, note the visible hyperechoic curved superficial cortex and the subclavian vessels at the end of the clip. 

Image 2. PoCUS of normal right clavicle along the short axis of the clavicle (arrows depict the hyperechoic superficial cortex with deep acoustic shadowing).

Image 3. PoCUS of a fracture in the left clavicle along the long axis of the clavicle

Clip 2. PoCUS of a fracture of the left clavicle, viewed in the long axis of the clavicle. Compare this view with image 1.

Clip 3. PoCUS of a fracture in the left clavicle viewed in the short axis of the clavicle. Compare this view with Clip 1. Note the fracture through the visible cortex and the displacement that becomes apparent halfway through the clip.

Radiographic findings: Radiographic findings of the left clavicle reveal a mid-shaft spiral clavicular fracture.  (Image 4).

Image 4. Radiographic image of fractured left clavicle.

 

Take home point: Research has shown that Ultrasonography is a sensitive diagnostic tool in the evaluation of fractures (Chapman & Black, 2003; Eckert et al., 2014; Chen et al., 2016).

This case provides an example of how PoCUS can be used to diagnose clavicle fractures in the emergency department. In a rural or office setting where radiography is not always available, PoCUS can be used to triage patients efficiently into groups of those with a fracture and those with a low likelihood of a fracture. This would enable more efficient medical referrals while improving cost-effectiveness and patient care.

References:

Chapman, D. & Black, K. 2003. Diagnostic musculoskeletal ultrasound for emergency physicians. Ultrasound, 25(10):60

Eckert, K., Janssen, N., Ackermann, O., Schweiger, B., Radeloff, E. & Liedgens, P. 2014 Ultrasound diagnosis of supracondylar fractures in children. Eur J Trauma Emerg Surg., 40:159–168

Chen, K.C., Chor-Ming, A., Chong, C.F. & Wang, T.L. 2016. An overview of point-of-care ultrasound for soft tissue and musculoskeletal applications in the emergency department, Journal of Intensive Care, 4:55

This post was copyedited by Dr. Mandy Peach

Continue Reading