An EM Approach to Syncope in Adults

 

Medical Student Pearl

Samarth Fageria

Med 3

Memorial University of Newfoundland Class of 2024

Reviewed by Dr. J Gross

Copy Edited by Dr. J Vonkeman

Pdf Download: EMSJ An EM Approach to Syncope by SFargeria

 


Case

A 60-year-old male presented to the ED after experiencing recurrent episodes of syncope. The first episode occurred at a convenience store in an upright position. He denied prodrome and exertional activity at the time of syncope. After a transient loss of consciousness, he woke up confused with urinary incontinence. He felt nauseous and had emesis in the ambulance on the way to ED. He had two more episodes of syncope over the span of two hours. On assessment in the ED, he endorsed a past history of light-headedness preceded by laughing and holding his breath. He denied dyspnea and chest pain. He had no significant past medical history. There was no family history of cardiovascular disease and syncope, and social history was unremarkable.

 

On examination, he was alert and oriented. He had a minor laceration on his forehead from the fall. His respiratory and cardiovascular exams were unremarkable, neurological exam was normal. In the ED, his blood work was unremarkable. He was placed on telemetry when he had two more episodes of syncope. The monitor showed 20-second-long sinus pauses corresponding with the syncopal episodes. Cardiology was consulted and he was temporarily placed on intermittent transcutaneous pacing.

 

 


Differential Diagnosis of Syncope2

True Syncope

1. Reflex (autonomic hypersensitivity)

  • Vasovagal, carotid sinus hypersensitivity, situational

2. Orthostatic hypotension

  • Volume depletion, autonomic failure

3. Cardiac

  • Valvular (aortic stenosis, mitral stenosis), dysrhythmias (bradyarrhythmia, ventricular tachyarrhythmia, supraventricular tachyarrhythmia), mechanical (pacemaker dysfunction), cardiomyopathy, infiltrative (eg. hemochromatosis, sarcoidosis, amyloidosis), acute MI, ARVC, cardiac tamponade, acute aortic dissection

Other Causes

1. Medication/ Drug-induced

  • Anti-hypertensives, QT prolonging meds, insulin, alcohol, anti-depressants, anti-glycemic agents, diuretics, anti-anginal agents, etc

2. Transient Loss of Consciousness (TLOC)

    • Traumatic brain injury, seizure disorders, intoxications, hindbrain TIA, conversion disorders and metabolic abnormalities

 


Background

Syncope is defined as a brief, sudden, transient loss of consciousness due to cerebral hypoperfusion1. The three broad categories of syncope are reflex, orthostatic and cardiac syncope. The most common cause of cardiac syncope includes dysrhythmias1. A good past medical history of cardiovascular disease is important as it is 85-94% sensitive and 64-83% specific in predicting a cardiac etiology of syncope1.


Diagnostic Workup

Diagnostic workup for syncope requires a thorough history, physical exam, and a 12-lead ECG. Cardiac monitoring is necessary in patients that present to ER with an acute presentation of syncope, and a strong suspicion for cardiac etiology2. History should consist of identifying high-risk features that warrant a prompt cardiology consult2. A detailed HPI should consist of asking about an absence of a prodrome, exertional or supine syncope, concomitant trauma, past medical history of cardiovascular disease and family history of sudden cardiac death (<50 years)2. Low-risk features include presence of a prodrome, specific triggers (eg. dehydration, stress, laughter), syncope while upright and the absence of cardiovascular disease2. Vital signs and a cardiac exam should be completed2. If cardiac causes of syncope cannot be ruled out on first assessment, a 12-lead ECG should be placed to assess for dysrhythmias or conduction disease, and serial troponin values should be collected2.

 

Though there are multiple clinical decision rules for syncope, the following have been externally validated: Evaluation of Guidelines in Syncope Study (EGSYS), San Francisco Syncope Rule and Osservatorio Epidemiologico sulla Sincope nel Lazio (OESIL)1. Patients that are stratified as high risk require admission for further evaluation. EGSYS predicts the probability of cardiac syncope at two years based on abnormal ECG findings (eg. BBB, sinus bradycardia), heart disease (eg. ischemic, structural), palpitations before syncope, as well exertional and positional syncope, symptoms of prodrome (nausea/vomiting) and predisposing/precipitating factors1. An admission is warranted if the patient scores a three or higher as there is a 21% mortality risk at two years1. The OESIL risk score estimates a 1-year all-cause mortality in patients presenting with syncope1. The factors include age (>65), history of cardiovascular disease, lack of prodrome and abnormal ECG characteristics (eg. BBB, AV conduction disorders and hypertrophy)1. Admission is warranted for one or more variables1. The Canadian Syncope Risk Score can be used in patients presenting to ER with syncope to predict a 30-day serious adverse events2.  It consists of factors such as abnormal QRS axis, corrected QT interval >480 ms, elevated troponin (>99th percentile of normal population) and ED diagnosis based on evaluation to stratify patients into risk categories: very low (-3 to -2), low (-1 to 0), medium (1 to 3), high (4 to 5) and very high (6 to 11)2.

The Canadian Journal of Cardiology recommends a disposition algorithm for patients presenting to ER with syncope that is based on history of a serious medical condition and high-risk features3. Figure 1 illustrates an approach to disposition from the ER. Patients that have an unclear etiology and intermediate risk should be considered for an urgent cardiology assessment.

 

Figure 1: A disposition plan for patients presenting to the ER with syncope (Canadian Cardiovascular Society 2020).


Best Practice for Treatment

Given the benign course, treatment for vasovagal syncope is based on lifestyle modification, education and reassurance2. Lifestyle modification consists of educating patients on identifying and managing prodromes early and managing triggers (eg. dehydration, defecation, micturition, laughing, coughing and crowded environments)2.

Treatment for orthostatic syncope also relies on lifestyle modification, education and reassurance2. Lifestyle modification consists of re-adjusting diuretics, ACE-inhibitors, angiotensin receptor blockers, calcium channel and beta blockers to ensure optimal blood pressure and hydration control2.

Managing cardiac syncope requires addressing the underlying etiology through antiarrhythmic medications (eg. tachyarrhythmias), cardiac pacing (eg. bradyarrhythmias), catheter-directed ablation and ICD insertion1. Cardiac pacemaker therapy is indicated for patients that have intermittent sinus node disease if correlation is identified between sinus pauses on ECG and syncope3. Selected patients that are diagnosed with the bradycardia-tachycardia form of sick sinus syndrome, can benefit from a percutaneous cardiac ablative technique3.  Dual-chamber pacing is recommended for patients with sinus node dysfunction provided there is an increased risk of AV block4.


Case continued

The patient was admitted and had no further asystole after receiving atropine and intermittent transcutaneous pacing. He was accepted for a dual-chamber pacemaker insertion and was discharged with the diagnosis of syncope with sinus arrest and vagal overtones.


Take Home Points

  1. Patients presenting to the ER with new-onset syncope require a thorough history and physical exam to rule out cardiogenic causes.
  2. Validated clinical decision-making tools can be helpful to supplement clinical judgement for assessing the risk of a future cardiac event, identifying the need for a cardiology consult and creating a disposition plan.

References

  1. Runser LA, Gauer RL, Houser A. Syncope: Evaluation and Differential Diagnosis. Am Fam Physician. 2017;95(5):303-312. https://www.aafp.org/pubs/afp/issues/2017/0301/p303.html#:~:text=A%20standardized%20approach%20to%20syncope,%2C%20physical%20examination%2C%20and%20electrocardiography
  2. UpToDate. www.uptodate.com. https://www.uptodate.com/contents/syncope-in-adults-clinical-manifestations-and-initial-diagnostic-evaluation
  3. Sandhu RK, Raj SR, et al. Canadian Cardiovascular Society Clinical Practice Update on the Assessment and Management of Syncope. Can J Cardiol. 2020;36(8):1167-1177. doi:10.1016/j.cjca.2019.12.023 https://www.onlinecjc.ca/article/S0828-282X(19)31549-1/fulltext
  4. Brignole M, Moya A, de Lange FJ, et al. 2018 ESC Guidelines for the diagnosis and management of syncope. Eur Heart J. 2018;39(21):1883-1948. doi:10.1093/eurheartj/ehy037https://academic.oup.com/eurheartj/article/39/21/1883/4939241?login=false
  5. Dakkak W, Doukky R. Sick Sinus Syndrome. In: StatPearls. Treasure Island (FL): StatPearls Publishing; July 18, 2022. https://www.ncbi.nlm.nih.gov/books/NBK470599/

Continue Reading

Under pressure: Anorectal abscesses… to drain or not to drain?

Resident Clinical Pearl

Victoria Landry

iFMEM R3

Reviewed by Dr. J Mekwan

Copy Edited by Dr. J Vonkeman

PDF Download: EMSJ Anorectal Abscess by VLandry


Case

A 57yo male presents to the emergency department with complaints of a lump near his rectum and pain with sitting which developed over the past week. He is afebrile with normal vital signs. He tells you that about 6 months ago this same thing occurred and drainage was attempted in the ED but was unsuccessful. A colorectal surgeon subsequently drained it successfully under local anesthetic in clinic later the same day. He has had no recurrence of symptoms until the past week. He smokes and has hypertension controlled with medication but is otherwise healthy.

He denies pain with defecation and has not had any rectal bleeding nor changes in bowel habits. He feels otherwise well and denies fevers or chills.

On exam you find a tender firm mass in the subcutaneous tissue lateral to his rectum on the left side. There is minimal overlying erythema and no fluctuance.


Key Point #1: Always do a Digital Rectal Exam

  • Palpate in all directions to localize area of tenderness1
  • Should be unremarkable after you get past the anal verge2 – if tenderness, mass, induration past anal verge, do a CT scan to assess for deeper abscess

You think back to your perirectal anatomy and recall the spaces where abscesses can develop.

Figure 1: Transverse anorectal anatomy3

Figure 2: Longitudinal anorectal anatomy3

 

  Perianal Ischiorectal Intersphincteric Supralevator Postanal
Incidence 40-45% 20-25% 20-25% <5% 5-10%
Location Outside anal verge, red, swollen, fluctuant, easily palpable at anal verge Between rectum and ischial tuberosity, outside sphincters, palpable through rectal wall or lateral to anal verge on buttocks Lower rectum, between sphincters, inferior to levator ani (tender indurated mass in rectum) Above levator ani (tender indurated mass in rectum) Posterior to rectum, Deep to external sphincter, inferior to levator ani
Symptoms Painful perianal mass Buttock pain Rectal fullness, throbbing, worse with defecation Perianal and buttock pain Rectal fullness and pain near coccyx
Fever, ↑WBC No Possibly Possibly Yes Yes
Fistula formation ++ + +++ +++
ED I&D Yes Possibly: I&D/needle aspiration only if abscess is superficial and fluctuant No No:

Consult surgery for urgent drainage

No

Table 1: Types of abscesses3

** caution as mass may be bigger/deeper than anticipated – prudent to defer to surgery for their expertise

Figure 3: Anorectal abscess locations4


Key Point #2: Get a CT scan to define the abscess for any of the following2

  • Unable to see the abscess superficially
  • Patient is unable to tolerate the DRE due to significant pain
  • Induration, bogginess or tenderness in the supralevator space (above the sphincter muscle)
  • If the extent of the abscess is uncertain4

Note: can use POCUS to evaluate location of abscess, but caution against false reassurance as to extent/depth, and safer to rely on palpable fluctuant mass to determine if I&D is safe

 

Figure 4: Perianal abscess on CT1


Management5

  • Simple, isolated, fluctuant perianal abscess4
    • Bedside I&D
    • Goal is to relieve the pus under pressure2
  • Ischiorectal abscess2
    • Can consider I&D only if superficial, but prudent to get a CT first
    • Consult surgery for their expertise
  • Intersphincteric, Supralevator, Postanal
    • CT to define the abscess
    • Consult surgery

Key Point #3: Err on the side of caution

Only do I&D in the ED if the following criteria are met3 [3]

  • Perianal abscess (+/- ischiorectal) is small and superficial
  • Patient
    • Is Well-appearing
    • Is Cooperative
    • Has no complicating factors (DM, immune compromise etc.)

Incision and Drainage of simple perianal abscess2

  • Local anesthetic – lidocaine with epinephrine
    • Infiltrate superficial skin where you will poke with needle
    • occasionally procedural sedation is needed3
  • Needle poke +/- aspiration (18guage) or pinpoint incision over painful region to localize purulent pocket4
  • Inject more local anesthetic2
  • Enlarge the incision
    • Make incision as close to anal verge as possible to minimize the length of any potential fistula2,5,6
    • Cruciate (with trimming of the flaps) or elliptical incision over fluctuant part of abscess is preferred over a linear incision to keep incision open and draining without painful packing2
    • If linear only, will need packing to prevent premature closure
    • Note: loop drainage technique not recommended for I&D in the ED7
  • Break up loculations with finger (increased tactile feedback and better control) or hemostat +/- irrigation with saline7
  • Cover with bulky dressing4
  • Ideally, close follow up until complete healing (up to 8wks) to monitor for recurrence and for fistula formation5
  • Uncomplicated perianal abscesses do not require antibiotics after successful drainage2.

Figure 5: Cruciate incision4


Instruct the patient to WASH8

  • W – warm water sitz baths 5-10min BID-QID PRN, with Epsom salts (start the day after I&D)
    • Water >40°C helps decrease anal canal pressure
  • A – analgesics (NSAIDs, topical 1-2% lidocaine gel)
  • S – stool softeners (PEG, senna)
  • H – high fiber diet +/- fiber supplement
  • Uncomplicated perianal abscesses do not require antibiotics after successful drainage2.


Indications for antibiotics (+/- tetanus +/- admission to hospital with surgical consult)4

  • Surrounding cellulitis
  • Immune compromise
  • Valvular heart disease
  • Diabetes
  • Systemic symptoms (Fever, ill appearing, leukocytosis)
  • Elderly

Note: Send off a wound culture before giving antibiotics

Antibiotic choice5:

  • Systemic: piperacillin-tazobactam
  • Oral: Amoxicillin-clavulanate or Metronidazole + ciprofloxacin

A word on fistulas

  • Fistulas are a connection between two epithelium-lined surfaces, characterized by persistent or recurrent anal drainage. They are seen in Crohn’s, TB, cancer, FB reactions, and as a complication of anorectal abscesses. Treatment is surgical3
  • ~50% of anorectal abscesses form a fistula overtime2
  • Suggest surgical consultation after drainage of perianal abscess as fistula formation is common4
  • Fistulas may be missed on CT scan; MRI is more sensitive for diagnosis2     

Take home points: 

  1. Always do a rectal exam as part of the initial evaluation
  2. Have a low threshold to get a CT scan to define the abscess
  3. Reserve I&D in the ED for perianal abscesses that are visible, superficial and fluctuant

References

  1. Farah, Jennifer, Mason, Jessica, and Werner, Jessie, “Perirectal Abscess & Pilonidal Cyst.” [Online]. Available: https://www.emrap.org/episode/gastro/perirectal
  2. Jhun, Paul and Cologne, Kyle, “Anorectal Infections,” HIPPO EMRAP, vol. 15, no. 9, pp. 17–18, Sep. 2015.
  3. Parrillo, “Anorectal Emergencies,” presented at the EMRAP, Temple University Hospital EM Residency, Feb. 2004. [Online]. Available: https://www.emrap.org/episode/september2004/anorectal
  4. Berberian J.G., & Burgess B.E. Tintinalli J.E., & Ma O, & Yealy D.M., & Meckler G.D., & Stapczynski J, & Cline D.M., & Thomas S.H.(Eds.), “Anorectal disorders,” in Tintinalli’s Emergency Medicine: A Comprehensive Study Guide, 9e, McGraw Hill, 2020. [Online]. Available: https://accessmedicine-mhmedical-com.ezproxy.library.dal.ca/content.aspx?bookid=2353&sectionid=219642697
  5. Streitz Matthew, Long Brit, “Anorectal Disease,” in CorePendium, Burbank, CA: CorePendium, LLC, 2022. [Online]. Available: https://www.emrap.org/corependium/chapter/reclLjrt5HvPGSIDv/Anorectal-Disease#h.d78nqbylr3x
  6. Bleday, Ronald, Perianal and perirectal abscess. uptodate.com, 2022. [Online]. Available: https://www.uptodate.com/contents/perianal-and-perirectal-abscess
  7. Cavanaugh, Megan and Ormon, Rob, “Anorectal Disorders.” [Online]. Available: https://www.emrap.org/episode/april2011/anorectal
  8. Lipp, Chris, “Anorectal Disorders.” [Online]. Available: https://canadiem.org/crackcast-e096-anorectal-disorders/

 

 

 

 

 

 

 

 

 

 

Continue Reading

EM Grand Rounds: Practical Points in Aboriginal Health

Continue Reading

Approach to Inguinal and Femoral Hernias in the Emergency Department

Medical Student Pearl

Julia Short

Med 2

DMNB Class of 2025

Reviewed by Dr D Lewis

Copy Edited by Dr. J Vonkeman

PDF Download: EMSJ Approach to Inguinal and Femoral Hernias in the ED by JShort


Case

A 52-year-old male patient presents in the ER with a lump in their right groin. The lump protrudes when they cough and when laying on their left side, although it re-enters the abdomen on its own. You wonder if it could be a femoral or an inguinal hernia, and how to go about differentiating between the two.


Introduction

A hernia is defined as an organ, or part of an organ, that protrudes through the body wall in which it is normally contained. The etiology of a hernia can be due to congenital anatomical malformations or from acquired weakening of the body wall tissues. There are various subtypes of abdominal hernias, while groin hernias consist of inguinal and femoral hernias. Throughout their lifetime, males have a 27 to 43% chance of developing a groin hernia, while females have a 3 to 6% lifetime prevalence1. Although it is much more likely that a groin hernia is inguinal in nature (they account for 96% of groin hernias), it is clinically useful to identify and distinguish between the types of groin hernias. Additionally, there are important clinical features that must not be overlooked when characterizing a groin hernia.


Distinguishing inguinal from femoral hernias

An important landmark in determining the hernia origin is the inguinal ligament. Inguinal hernias protrude superior to the inguinal ligament, while femoral hernias present inferior to the inguinal ligament (Figure 1). This is because femoral hernias protrude from the femoral ring, located medial to the femoral vein. As a result, in males, femoral hernias will never course into the scrotum. Femoral hernias also present more lateral than inguinal hernias and may be difficult to differentiate from lymph nodes. Although they account for only 3% of all groin hernias, 40% of femoral hernias present as urgent due to bowel strangulation or incarceration1. Females are more likely to develop femoral hernias, while males are more likely to develop inguinal hernias.

Figure 1. Groin anatomy © 2023 UpToDate7


Distinguishing between direct and indirect inguinal hernias

Direct inguinal hernias originate medially, near the pubic tubercle and external inguinal ring. They protrude through Hesselbach’s triangle as a result of weakness in the floor of the inguinal canal. On exam, a bulge near the external (superficial) inguinal ring is suggestive of a direct inguinal hernia. In contrast, indirect inguinal hernias protrude near the midpoint of the inguinal ligament, at the internal (deep) inguinal ring (Figure 2). In males and females respectively, the internal inguinal ring is where the spermatic cord and round ligament exit the abdomen. A bulge in this area therefore suggests an indirect inguinal hernia. This type of hernia is the most common in all ages and sexes, accounting for approximately two thirds of all inguinal hernias2. In males, the indirect hernia often courses into the scrotum, which can be palpated if the patient strains or coughs. In contrast, it is rare for a direct hernia to course into the scrotum.

Figure 2. Anatomical comparison of direct and indirect inguinal hernias © 2020 Dr. Vaibhav Kapoor8


Clinical Approach

General considerations for investigating groin hernias include assessing the symptoms at presentation as well as any “red flag” physical findings. Patients commonly complain of dull or heavy types of discomfort when straining, which resolves when straining stops. Most groin hernias occur on the right side. Common physical findings include a bulge in the groin, which can indicate the type of hernia based on location relative to the inguinal ligament (Figure 3). However, in female or obese patients, the layers of abdominal wall may make the hernia more difficult to locate. In these cases, ultrasound or other imaging is needed to detect hernias. Clinicians should also determine if the hernia is reducible, or if the herniated bowel can be returned to the abdominal cavity when moderate pressure is applied externally.

Figure 3. Locations of femoral and inguinal hernias on examination © 2023 UpToDate7

 

Physical examination has a 76 to 92% sensitivity and 96% specificity for diagnosing groin hernias, although imaging may also be required1,2. Nausea, vomiting, fever, moderate-to-severe abdominal pain, localized tenderness, or bloating may indicate more sinister pathology such as bowel incarceration (when the hernia contents cannot return to the abdominal cavity), strangulation (when the blood supply to the involved bowel section is compromised) or necrosis.

Figure 5. CT images of A) femoral hernia (courtesy of Chris O’Donnell9 and B) inguinal hernia (courtesy of Erik Ranschaert10)


Management

Uncomplicated or asymptomatic hernias in males can be monitored through watchful waiting. Surgical repair is a definitive treatment for inguinal hernias and should be considered for symptomatic or complex hernias. If repair is needed for an uncomplicated inguinal hernia, a laparoscopic repair is recommended. Watchful waiting is not recommended for femoral hernias – these patients should have a laparoscopic repair (when anatomically feasible).

Manual reduction of the hernia can be performed by following the GPS Taxis technique. Taxis is a non-invasive technique for manual reduction of incarcerated tissues in a hernia to the original compartment5. “GPS” is an acronym to remind clinicians to be gentle, be prepared, and be safe when performing taxis5. Conscious sedation with intravenous diazepam and morphine is recommended for the procedure. Consider having an anesthetist present for the procedure if the patient is frail. Provide appropriate early resuscitation by monitoring vital signs, administering oxygen therapy and establishing IV access. Place the patient in Trendelenburg position. Begin the GPS Taxis technique by palpating the fascial defect around the base of the hernia and gently manipulating hernia contents back into the abdominal cavity. Use gentle manipulation pressure over 5-10 minutes until a gurgling sound is heard (indicating successful reduction of bowel).

 

Taxis guided by ultrasound may increase success rates for reduction.

https://sjrhem.ca/taxis-reduction-of-inguinal-hernia/

Figure 4. Colourized clip demonstrating PoCUS assisted Taxis reduction of an inguinal hernia11

 

It should be noted that the major contraindication to performing GPS Taxis is bowel strangulation within the hernia. A rare but serious complication of manual reduction is reduction en masse, when a loop of bowel remains incarcerated at the neck of the hernia after manual reduction6. This can lead to early strangulation, intestinal necrosis, sepsis, organ failure and death. Femoral hernias and indirect inguinal hernias are at higher risk of reduction en masse from manual reduction attempts.


References:

  1. UpToDate – Classification, clinical features, and diagnosis of inguinal and femoral hernias in adults
  2. Hammoud M, Gerken J. Inguinal hernia. StatPearls. 2022 Aug 15.
  3. UpToDate – Overview of treatment for inguinal and femoral hernia in adults
  4. Bates’ Guide to Physical Examination and History Taking, 12th ed. (pdf). Chapter 13: Male Genitalia and Hernias
  5. Pawlak M, East B, de Beaux AC. Algorithm for management of an incarcerated inguinal hernia in the emergency settings with manual reduction. Taxis, the technique and its safety. Hernia, 25, 1253-1258. 2021 May 25.
  6. Yatawatta A. Reduction en masse of inguinal hernia: a review of a rare and potentially fatal complication following reduction of inguinal hernia. BMJ Case Rep. 2017 Aug 7.
  7. UpToDate – Classification, clinical features, and diagnosis of inguinal and femoral hernias in adults
  8. Kapoor, V. Difference between and inguinal and umbilical hernia. 2020. Retrieved from: https://www.drvaibhavkapoor.com/difference-between-inguinal-and-umbilical-hernia.html
  9. Patel, MS. Femoral hernia. Radiopaedia. 2022 Dec 28. Retrieved from: https://radiopaedia.org/articles/femoral-hernia
  10. Fahrenhorst-Jones, T. Inguinal hernia. Radiopaedia. 2022 Apr 12. Retrieved from: https://radiopaedia.org/articles/inguinal-hernia
  11. PoCUS assisted Taxis reduction of an inguinal hernia. Video obtained courtesy of Dr. David Lewis.

Continue Reading

EM Grand Rounds: 2SLGBTQIA+ Health in the ED

Dr. J Vonkeman

 

Resources:

 

Gender Inclusive Language Resources

General language

Language for clinical settings

 

Education for Health Care Providers

Rainbow Health Ontario

TransCare BC

Gender Diversity Education

 

Guidelines:

TransCare BC Primary Care Tool Kit

Sherbourne Health Trans Health Care

UCSF Transgender Care

 

Continue Reading

Nursemaid’s Elbow

Nursemaid’s Elbow

Medical Student Pearl

 

Erika Maxwell

@ErikaMaxwell

Memorial University Class of 2023

Reviewed by: Dr. David Lewis


Case

A 10-month-old female is brought into the Emergency Department by her mother with a left arm injury. The infant had a fall from standing and the mother reached out to grab her and caught her left forearm. After the incident, the patient’s mother noticed that the infant was no longer using the arm. The child has no medical history and is not taking any medications. She is vitally stable.

On exam, the child’s left arm is limp and extended at her side. She is using her right arm and hand exclusively, including to grasp for items on the left side of her body (pseudoparalysis). There is no deformity, erythema, edema, or ecchymosis. The arm and hand are neurovascularly intact (strong brachial pulse, pink and warm).


Differential Diagnosis

  • Nursemaid’s elbow/pulled elbow/radial head subluxation
  • Elbow fracture
  • Wrist fracture or soft tissue injury
  • Shoulder dislocation

Background

A pulled elbow occurs most frequently in young children with the median age for presentation being 2 years [1]. The reason for this is debated in the literature with some sources saying that the annular ligament is weaker in children [2] and others saying that the radial head is smaller [1], both resulting in a less stable joint.

The most common mechanism of injury is axial traction (i.e. pulling on the arm or hand), but falls or rough play may also be responsible [2].


Anatomical Context

The annular ligament holds the radial head in place next to the ulna. When axial traction is applied by pulling the forearm or hand, the radial head may move underneath the annular ligament and trap it in the radiohumeral joint, against the capitellum [1].

Figure 1: The arm on the left displays a normal elbow, whereas on the right the radius is subluxated and trapping the annular ligament against the capitellum [3].


Signs and Symptoms [3]

  • Pain at elbow
  • Pseudoparalysis of injured arm
  • Extension or light flexion of injured arm, often pronated

Diagnosis and Management

A full examination of the upper limb is required. Leave obviously swollen or deformed areas until the end. Palpate the clavicle, humerus, forearm and gently move the joints (shoulder, wrist, and lastly elbow). Pulled elbows rarely result in joint swelling. If this is present an alternative diagnosis should be considered (e.g., supracondylar fracture).

If a pulled elbow is the only likely diagnosis, then it may be reasonable to proceed to a subluxated radial head reduction manoeuvre. However, when the history is not clear (e.g., unwitnessed mechanism involving siblings or a fall), then it is much safer to perform further diagnostic tests prior to manipulation. These include radiograph of the elbow to rule out fracture or elbow ultrasound to rule out joint effusion [4].


Reduction Technique

 This is done by supporting the elbow with one hand and using your other hand to move the patient’s arm through the recommended maneuvers. There are 2 different maneuvers to try, and they may be used alone or in combination [1-3,5].

  • Supinate the child’s forearm with your hand and flex the elbow

 

Figure 2: Demonstration of the supination/flexion maneuver [5]

  • Hyperpronate the child’s forearm

Figure 3: Demonstration of the hyperpronation maneuver [5]

Some research has indicated that the hyperpronation maneuver may be more effective and less painful for the patient [2,6], so it may be worth attempting this maneuver first.

If the maneuvers are successful, you may hear a click from the radial head as it moves back into place. The child may briefly cry as the subluxation is reduced. Movement recovery can take anywhere from a few minutes to several hours, but usually occurs within 30 minutes. The greater the delay from injury to presentation and subsequent reduction, the longer it will take for post reduction return to normal movement [2].

If a click is heard or felt during the manoeuvre it can usually be assumed that reduction has occurred. Ideally, it is recommended that the child remain under observation until normal movement returns. However, if delayed, it is reasonable to discharge the child with advice to return.

In any case where an x-ray or ultrasound has not been performed and the child does not rapidly start using their arm post manoeuvre, then imaging is required prior to any further manipulation.


Prognosis

Although a pulled elbow does not result in a permanent injury, it is important to inform the family that their child will be vulnerable to recurrent pulled elbows in the affected arm. Up to 27% of patients with a pulled elbow may experience a recurrence [7-8].


Case continued:

Based on the patient’s history and physical exam, she was diagnosed with a pulled elbow. Using the supination and flexion maneuver followed by the hyperpronation maneuver, an audible click was elicited from the patient’s elbow. Shortly thereafter, she began using the arm again as if no injury had occurred and was discharged home.


Key points:

 

  1. A pulled elbow is a common upper limb injury in young children presenting to the Emergency Department
  2. Careful assessment may preclude the need for diagnostic imaging however if in any doubt further investigation should be performed prior to manipulation. Many physicians will never forget the time they used a pulled elbow reduction technique in a child with an unexpected supracondylar fracture
  3. HYPERPRONATE and/or SUPINATE & FLEX!
  4. Recurrence is common

References

  1. Aylor, M., Anderson, J., Vanderford, P., Halsey, M., Lai, S., & Braner, D. A. (2014). Reduction of pulled elbow. New England Journal of Medicine, 371(21), e32.
  2. Wolfram, W., Boss, D., & Panetta, M. (2018, December 18). Nursemaid Elbow. Medscape. Retrieved September 6, 2022, from https://emedicine.medscape.com/article/803026-overview#a5
  3. Boston Children’s Hospital. (2021). Nursemaid’s elbow. Retrieved September 6, 2022, from https://www.childrenshospital.org/conditions/nursemaids-elbow
  4. Varga, M., Papp, S., Kassai, T., Bodzay, T., Gáti, N., & Pintér, S. (2021). Two- plane point of care ultrasonography helps in the differential diagnosis of pulled elbow. Injury, 52(1), S21-24.
  5. Kilgore, K., & Henry, K. (2021). Nursemaid’s elbow. Society for Academic Emergency Medicine – Clerkship Directors in Emergency Medicine. Retrieved September 6, 2022, from https://www.saem.org/about-saem/academies-interest-groups-affiliates2/cdem/for-students/online-education/peds-em-curriculum/nursemaid%27s-elbow
  6. Lewis, D., Argall, J., & Mackway-Jones, K. (2003). Reduction of pulled elbows. Emergency Medicine Journal, 20, 61-62.
  7. Schunk, J. F. (1990). Radial head subluxation: epidemiology and treatment of 87 episodes. Annals of emergency medicine, 19(9), 1019-1023.
  8. Teach, S. J., & Schutzman, S. A. (1996). Prospective study of recurrent radial head subluxation. Archives of pediatrics & adolescent medicine, 150(2), 164-166.
Continue Reading

EMSJ CPD Recommendations – May 2023

 Dr Mackenzie Howatt MD FRCPC, Director of CPD

 

I’ve listed below a few external CPD activities for your perusal. I’m hoping to be able to update you monthly on upcoming activities both internal and external to our department to make sure everyone is aware of at least some of the myriad activities out there. I have no involvement/personal stake in any of the listed activities.

 

External CPD Activities 


Clinical Courses:

  1. CAEP –AIME – Airway Interventions & Management in Emergencies. Hands on course to enhance your airway skills. Advanced and Awake courses take place in Halifax and use high quality cadavers for training. Requires registration on CAEP website.https://caep.ca/cpd-courses/. May 26, 27 (Toronto) (Full, can be put on waitlist).  AIMEadvanced September 10 (Halifax) (Full, can be put on waitlist). AIME awake Sept 9th(Halifax). Different rates for CAEP and non CAEP members
  2. https://imagesim.com/ – An online repository of pediatric images (xray, US, etc) and cases used for resident or faculty education. Different “packages” can be purchased and you have access for 2 years to the particular images/cases. Based out of SickKids in Toronto.
  3. CAEP – Geriatric EM – mix of video modules and then live virtual course on May 27th. Register https://caep.ca/cpd-courses-2/geri_em/.
  4. CAEP “National Grand Rounds” –https://caep.ca/cpd-courses-2/caep-national-grand-rounds/
  5. The Resus Course – 2 day course. Hands on training in resuscitation topics in Halifax. July 27/28, Aug 26, Oct 5/6 organized by Dr. James Gould in Halifax, NS (Dal EM). Contact at [email protected] or go directly to www.theresuscourse.com
  6. Trauma Resuscitation in Kids (TRIK) – In person simulation courses held over two days with focus on pediatric trauma management. June 16-17 (Montreal).https://cpd.royalcollege.ca/product?catalog=TRIK
  7. Resuscitative TEE – 1 or 2 day simulation course on using TEE in the emergency setting. Held across the world, mostly as pre course offerings for various conferences. Please see website for details. https://www.resuscitativetee.com/workshop
  8. SRPC (Society of Rural Physicians of Canada)- Opportunities for rural (SHC/CCH) physicians to expand skill set beyond comprehensive primary care (such as Emergency Medicine!). Can apply for up to 30 days of training reimbursed at up to 1000 per day plus costs. https://srpc.ca/advanced-training. Can also apply to be a preceptor. https://srpc.ca/event-5203406

Conferences:

  1. CAEP National conference – May 28-31. Toronto. Requires registration
  2. ICEM (International Conference on Emergency Medicine) – June 13-16, 2023.https://icem2023.com/ Taking place in Amsterdam.
  3.  EUSEM – European Emergency Medicine Congress – September 17-20 in Barcelona, Spain. An international conference on Emergency Medicine. Early bird registration until June 7th. https://eusemcongress.org/
  4. ACEP – American College of Emergency Physicians – Oct 9-12 in Philadelphia. International conference on Emergency Medicine. https://www.acep.org/sa.

 


Administrative/Leadership/Faculty Development/Education:

  1. Dalhousie CPD – NB Medical Education Forum May 11-12. Setting Up For Success in the NB Clinical Teaching and Learning Environment. Being held in Saint John at the Trade and convention centre. Melanie sent an email on April 21 with agenda and contact details
  2. Dalhousie Faculty Development – Numerous online Faculty development talks, typically 1-2 hours in May and June. Topics include Medical Education, preparation for academic promotion, EDIA, etc. https://medicine.dal.ca/departments/core-units/cpd/faculty-development.html
  3. Physician Leadership Institute (PLI) – Through Joule (affiliated with CMA). Currently being redesigned to “better align with advocacy priorities and support physicians in driving system level change”. Current offerings include a variety of online leadership courses “Leading change” (June 8-9). https://joulecma.ca/learning/physician-leadership-institute?_gl=1*d7fypw*_ga*MTcxNjY1Njc0Mi4xNjcwOTQ1MDIz*_ga_91NZ7HZZ51*MTY3ODM3MjMzNS45LjAuMTY3ODM3MjMzNS42MC4wLjA.

“Home Grown” EMSJ CPD

  1. CanPoCUS – https://www.canpocus.com
    1. Core – Saint John –  May 12th
    2. IP School – Saint John – May 13th
    3. Resuscitation – St Johns, NFLD – June 17-18th
    4. CanPoCUS Fest Advanced – Moncton – Sept 22-23rd
    5. PEMPoCUS – Saint John – Nov 23-24th
  2. The EMR Course
    1. Places still available 2023 for self directed
  3. EMSJ Sim
    1. Sim Debrief course “The Basics”– June 15 – 16, registration currently open.

 


 

Continue Reading