CanPoCUS Core Course – Saint John – May 12, 2023
CanPoCUS IP School – Saint John – May 13, 2023
A 58-year-old male presents to Emergency Department with sudden onset of chest pain that is radiating to the back. He was also having shortness of breath at the same time of chest pain. The patient later reveals that his past medical history only consists of “bicuspid valve”, and he takes no medication. On examination, he was uncomfortable, but no signs of acute distress. His respiratory and cardiac exam were unremarkable for reduced air sound, adventitious sound, heart murmur, or extra heart sound. ECG was normal and initial cardiac markers were within normal range. His chest x-ray is normal.
You are aware that with his medical presentation and a history of bicuspid aortic valve, you need to consider associated concerning diagnosis (aortic root aneurysm and aortic dissection) within the differential (myocardial infarct, congestive heart failure, pneumonia, etc.).
Bicuspid aortic valve is one of the most common types of congenital heart disease that affects approximately one percent of population. There is a strong heritable component to the disease. Bicuspid aortic valve occurs when two leaflets fused (commonly right and left coronary leaflets) and form a raphe, a fibrous ridge1. The fusion of the leaflets can be partial, or complete, with the presence or absence of a raphe1. Bicuspid aortic valve disease is associated with increasing risks for valve calcification, which lead to aortic stenosis or regurgitation secondary to premature degeneration1. This congenital heart defect is also a well-known risks factor for aortic dissection and aortic dilatation. Reports have estimated prevalence of aortic dilation in patients with bicuspid aortic valve ranging between 20 to 80 percent, and that the risks of aortic dilation increase with age2. Increases risk of aortic dilatation in bicuspid valve disease also leads to a significantly greater risk for aortic dissection2.3.
The majority of patients with bicuspid aortic valve are asymptomatic with relatively normal valve function and therefore can remain undiagnosed for many years. However, most patients with bicuspid aortic valve will develop complications and eventually require valve surgery within their lifetime. Early diagnosis, while asymptomatic, can enable close follow-up for complications and early intervention with better outcomes. However, asymptomatic individuals are rarely referred for echocardiography.
With increasing use of cardiac PoCUS by Emergency Physicians, there are two scenarios where increased awareness of the appearance of bicuspid aortic valve and its complications may be of benefit.
This clinical pearl provides a review of the clinical approach to bicuspid aortic valve and its associated complications and provides guide to enhancing clinical assessment with PoCUS.
Although bicuspid aortic valve commonly presents as asymptomatic, a detailed focused cardiac history can assess for clinical signs and symptoms related to valve dysfunction and its associated disease, such as reduced exercise capacity, angina, syncope, or exertional dizziness1. Information about family history with relation to cardiac disease is essential for a clinician’s suspicion of heritable cardiovascular disease. Red flag symptoms that shouldn’t be missed such as chest pain, back pain, hypertensive crisis, etc. should be specifically identified. They are indicators for possible emergent pathologies that should not be missed (for example: acute MI, aortic dissection, ruptured aortic aneurysm, etc.)
Physical examination findings in patients with bicuspid aortic valve include, but not limited to, ejection sound or click at cardiac apex/base, murmurs that have features of crescendo-decrescendo or holosystolic. Clinical signs of congestive heart failure such as dyspnea, abnormal JVP elevation, and peripheral edema may also be present.
With cardiac PoCUS, it is important to obtain images from different planes and windows to increase the complexity of the exam and to be able to be confidently interpreting the exam. There are four standard cardiac view that can be obtained: parasternal short axis (PSSA), parasternal long axis (PSLA), subxiphoid (sub-X), and apical 4-chamber view (A4C). Each cardiac view has specific benefits.
With the PSLA, the phased-array transducer is placed to the left sternum at 3rd or 4th intercostal with transducer orientation pointing toward patient’s right shoulder. Key structures that should be seen are Aortic Valve (AV), Mitral Valve (MV), Left Ventricle (LV), pericardium, Right Ventricle (RV), Left Ventricular Outflow Tract (LVOT), and portion of ascending and descending aorta8. It is primarily used to assess left ventricular size and function, aortic and mitral valves, left atrial size8. Furthermore, pericardial effusions and left ventricular systolic function can be assessed.
Using the same transducer position as the PSLA the transducer can be centered to the mitral valve and rotated 90 degrees clockwise to a point where the transducer marker points to patient’s left shoulder to obtain the PSSA. With this orientation, one can assess for global LV function and LV wall motion8. Furthermore, with five different imaging planes that can be utilized with this view, aortic valve can be visualized in specific clinical contexts.
The apical 4-chamber view is generated by placing the transducer at the apex, which is landmarked just inferolateral to left nipple in men and underneath inferolateral of left breast in women. This view helps the clinician to assess RV systolic function and size relative to the LV8.
The subxiphoid view can be visualized by placing a transducer (phased-array or curvilinear) immediately below the xiphoid process with the transducer marker points to patient’s right. The movements of rocking, tilting, and rotation are required to generate an optimal 4-chamber subcostal view. A “7” sign, which consists of visualizing the border between liver and pericardium, the septum, and the RV and LV that looks like number 7. This view allows user to assess RV functions, pericardial effusion, and valve functions8. In emergency setting, it can be used for rapid assessments in cardiac arrest, cardiac tamponade, and global LV dysfunction8.
From – the PoCUS Atlas
In assessing the aortic valve, the PSSA and PSLA can be best used to obtain different information, depending on clinical indications. Both views can be used to assess blood flows to assess stenosis or regurgitation. However, the PSLA view includes the aorta where clinician can look for aortic valve prolapse or doming as signs of stenosis and its complications, like aortic dilatation. On the other hand, PSSA are beneficial when assessing the aortic valve anatomy.
From – the PoCUS Atlas
With PSSA view, the normal aortic valve will have three uniformly leaflets that open and form a circular orifice during most of systole. During diastole, it will form a three point stars with slight thickening at central closing point. The normal aortic valve is commonly referred to as the Mercedes Benz sign.
However, the Mercedes Benz Sign sign can be misleading bicuspid valve disease when three commissure lines are misinterpreted due to the presence of a raphe. A raphe is a fibrous band formed when two leaflets are fused together. It is therefore important to visualize the aortic valve when closed and during opening, to ensure all 3 cusps are mobile. Visualization of The Mercedes Benz sign is not enough on its own to exclude Bicuspid Aortic Valve.
Apparent Mercedes sign when AV closed due to presence of raphe. Fish mouth appearance of the same valve when open confirming bicuspid aortic valve
Identification requires optimal valve visualization during opening (systole). Appearance will depend on the degree of cusp fusion. In general a ‘fish mouth’ appearance is typical for bicuspid aortic valve.
In the parasternal long axis view the aortic valve can form a dome shape during systole, and prolapse during diastole, rather than opening parallel to the aorta. This is called systolic doming. Another sign that can be seen in PSLA view is valve prolapse, when either right or non-coronary aortic valve cusps showed backward bowing towards the left ventricle beyond the attachment of the aortic valve leaflets to the annulus. This can be estimated by drawing a line joining the points of the attachment.
In patients presenting with chest/back pain, shock or severe dyspnea who have either known or newly diagnosed bicuspid valve disease, PoCUS assessment for potential complications can be helpful in guiding subsequent management.
Complications of bicuspid aortic valve include aortic dilatation at root or ascending (above 3.8cm) and aortic dissection 5-9.
Valve vegetations or signs of infective endocarditis are among the complications of severe bicuspid valve5-9
Management of bicuspid aortic valve disease is dependent on the severity of the disease and associated findings.
For a patient with suspicious diagnosis of bicuspid valve disease, a further evaluation of echocardiography should be arranged, and patient should be monitored for progressive aortic valve dysfunction as well as risk of aortic aneurysm and dissection. Surgical intervention is indicated with evidence of severe aortic stenosis, regurgitation, aneurysm that is > 5.5cm, or dissection1.
Bicuspid aortic valve disease is usually diagnosed with transthoracic echocardiography, when physical examination has revealed cardiac murmurs that prompt for further investigation. However, patients with bicuspid valve disease frequently remain asymptomatic for a prolonged periods. Michelena et al. (2014) suggested that auscultatory abnormalities account for 60 to 70% diagnostic echocardiograms for BAV in community10.
While there are no published studies on the utility of PoCUS for the diagnosis of bicuspid aortic valve, there are studies on the use of PoCUS as part of the general cardiac exam. Kimura (2017) published a review that reported early detection of cardiac pathology when PoCUS was used as part of the physical exam 9. Abe et al. (2013) found that PoCUS operated by expert sonographer to screen for aortic stenosis has a sensitivity of 84% and a specificity of 90% in 130 patients 11. In another study by Kobal et al. (2004), they found that PoCUS has a specificity of 93% and sensitivity of 82% in diagnosing mild regurgitation12.
There are also limitations of using PoCUS to assess for bicuspid aortic valve disease, or valve disease in general. Obtaining images from ultrasound and interpretation are highly dependent on user’s experiences to assess for the valve9. Furthermore, research is needed to investigate the use of PoCUS in lesser valvular pathology.
When a new diagnosis of bicuspid aortic valve is suspected, a formal echocardiogram should be arranged, and follow-up is recommended.
Resuscitative TEE – the whats, the whys and the hows…. A brief review of the literature, examples of use and a proposed cardiac arrest protocol
Professor, Dalhousie Department of Emergency Medicine
Download Slides – PoCUS Rounds – TEE – Nov 2022
http://pie.med.utoronto.ca/tee/
ACEP NOW – How to Perform Resuscitative Transesophageal Echocardiography in the Emergency Department
Dr. Jill Carter Dalhousie EM Resident
Dr. Rawan Alrashed (@rawalrashed)
PEM Physician
PoCUS Fellow
Reviewed and edited by: Dr. David Lewis
Pediatric vascular access is one of the challenging skills in the medical field especially during an emergency, different guidelines have been established to facilitate the choice of the proper IV access one of which is the miniMAGIC that was published in 2020.1 Choosing the right access is crucial for success taking in consideration the urgency of access, patient safety, infused fluid characteristic to determine the right one especially with a peripheral IV catheter failure rate of 77% in the first attempt.2 Difficult intravenous Access score (DIVA) is one of the tool that can be used to evaluate the feasibility of a peripheral IV and accordingly, the best next step for IV line insertion where Subjects with a DIVA score of 4 or more were more than 50% likely to have failed intravenous placement on first attempt.3
Figure-1: DIVA score.4
Figure 2: Vascular Access Locations.5
Multiple choices are available starting from non-pharmacological distraction technique and non-nutritive sucking to the utilization of local anesthetic such as EMLA and LMX as well the needle-free lidocaine jet-injection
Patient resuscitation.
Delivering fluids, medication, Blood sampling.
Hemodynamics monitoring as well arterial blood gas.
Infection at the insertion site.
Thrombosis of the vein.
Bleeding diathesis in central line is a relative contraindication.
In IO Access, fracture on the same bone as well pathological disorder predisposing to fractures is a contraindication.
Different veins can be used for PIVC starting with dorsal veins of the hand, then the feet and then proceeding to other choices including scalp vein in infants, external jugular vein, antecubital and the great saphenous vein as in Figure-2.5
Technique:5
|
Neonate | Infant | Children | Length |
PIV | 24-26G | 22G | 20G | 2-6cm |
Midline Access | 22G | 22G | 20G | 15-30cm |
Table-1: Size of PIV catheter.
A recent RCT by Vinograd et.al. evaluated 167 children showed 85% success rate of first attempt with US guidance compared to 45% with traditional methods. Also US guidance resulted in shorter cannulation time, less redirection and fewer attempts.6
Longer catheter are preferable when using ultrasound guided insertion especially with a vein deeper then 0.5 cm to minimize the risk of dislodgment and infiltration (suggested to be longer than 2 cm). In a pilot study by Paladini, long catheter > 6 cm were associated with lower risk of failure in pediatric patients more than 10 years comparable to the short one <6 cm.8
Pitfalls:
Pitfalls:
No evidence of preferable technique in pediatrics but in adults out-of-plane proven to be superior for PIVC insertion.
https://www.coreultrasound.com/ultrasound-guided-peripheral-iv-access/
It’s considered the best alternative IV access in emergencies (peri-arrest and arrest condition) after 2 failed attempts of PIVC within 60-90 seconds, AHA recommends IO catheter as first line access in cardiac arrest. Still the outcome of out of hospital cardiac arrest and best access need more delineation.4,5
Figure-2 (on green) shows the possible site for IO insertion where the commonest one is the proximal tibial shaft about 1-2 cm from the tibial tuberosity avoiding the growth plate.
Confirmation of IO by POCUS2
Figure-3: POCUS confirmation of IO site.
Central IV Catheter (CIVC)
This an alternative longer duration route that can be utilized as an emergency line but less favorable compared to the IO during initial resuscitation. It is still considered a good choice in ill patients with difficulty of PIVC and failure of US guided peripheral access as well IO when fluid, high concentrated electrolytes and vasopressors are needed.4
The common site for insertion of non-tunneled CVC in pediatric is the internal jugular in critical care setting with higher success rate compared to femoral vein9 , but the femoral vein might be the first choice in PEM as it’s easily accessible and don’t interfere with resuscitation measures.10
Always prepare your equipment and check them, also get consent when possible before attempting a central line
Age(years) | weight (kg) | Catheter gauge | French gauge | length (cm) |
<1y | 4-8 | 24 | 3 | 5-12 |
<1y | 5-10 | 22 | 3-3.5 | 5-12 |
1-3y | 10-15 | 20 | 4 | 5-15 |
3-8y | 15-30 | 18-20 | 4-5 | 5-25 |
>8y | 30-70 | 16-20 | 5-8 | 5-30 |
Table-2: CVC sizes.4
Internal Jugular vein:
Subclavian vein:
Directly below the clavicle at the junction of the lateral one third with the medial two third directing the needle toward the sternal notch
Femoral vein:
1-2 cm below the inguinal ligament medial to the femoral artery, guide the needle toward the umbilicus
The use of ultrasound guided insertion is considered the standard of care for central line insertion. Ultrasound use reduces the number of attempts and procedure duration, increases the successful insertion rate, and reduces complications compared to the skin surface anatomic landmarks technique.9
This can facilitate visualization, increase the success rate with 95% first attempt success rate of ultrasound-guided venous punctures compared to 34% of the anatomical landmark and decrease the rate of complication that would occur with the anatomical landmark.11
Internal jugular vein:
Confirm proper placement by US as well X-Ray
R/O complication as pneumothorax, hemothorax or hematoma, mis-displacement
Artery puncture, air embolism, thoracic duct injury, arrhythmia are possible complications.
It is uncommon access in pediatric patients with the availability of IO needle, if needed the classic site is the saphenous vein which is 2 cm superior and anterior to the medial malleolus.
Resources:
PEM Physician
PoCUS Fellow
Acute Scrotal pain represent 0.5% of Emergency department visit, less than 25% of those are due to testicular torsion (1). Clinical history and physical examination don’t consist a definitive tool to diagnose the problem especially when presentation of different causes of scrotal pain can overlap. Testicular torsion doesn’t always present with the typical acute onset of pain as gradual onset was found in 25% of presentation which is described for the epididymo-orichitis (2-3). Scrotal pathology is divided into the 4 following groups: torsion, trauma, infection, and tumors, often described as the scrotum’s “4 T’s (4).
Review on how to approach Acute scrotal pain can be found on this post:
The testicles originate in the posterior abdominal wall in embryonic life then migrates to the scrotum, in case of failure of migration presentation of acute scrotum can be along the abdomen, inguinal canal.
Figure-1 Anatomy on Transverse and Longitudinal plane (Radiology Key)(5)
The testicle is enveloped by a fibrous capsule called the tunica albuginea, which projects into the testis to form the mediastinum testis. The tunica vaginalis is a two-layered membrane that covers the tunica albuginea. Multiple testicular seminiferous tubules run toward the mediastinum and coalesce into a network of channels called the rete testis. These channels pass through the mediastinum and tunica albuginea to form the epididymal head, body, and tail ducts, which continue as the vas deferens. The spermatic cord contains the vas deferens, testicular vessels, pampiniform venous plexus, and nerve (6).
N.B. Doppler settings should be optimized to maximize detection of low-velocity flow. Color Doppler gain should be adjusted to eliminate artifacts. This can be done by adjusting the scale of flow on the normal testis then use it to visualize the abnormal one. (6)
Video on how to do the scan (7):
Figure 2- Ultrasound Anatomy: a- Transverse view, b- sagittal view (6)
Testicular Torsion is a clinical diagnosis mainly affecting children with two age peaks at 1 year and adolescence (6). TWIST score can help in risk stratifying the patients which was developed by urologist and validated in pediatric age group in emergency setting (8).
REMEMBER
Time is testicle, So once suspected involve surgical specialty for De-torsion. As the salvage rate is as high as 80%-100% if it was repaired within 6 hours of symptom onset then drops to 20% after 12 hours (9).
If diagnosis couldn’t be made clinically, Scrotal ultrasound can help with the use of color and spectral doppler to rule in this diagnosis.
Findings:
It will depend on the timing of presentation
Early (within 6 hours):
After 6 hours Reduced arterial blood supply with high resistance flow pattern compared to normal flow.
Late(After 24 h):
Important to keep in mind:
-In case of Partial torsion, the previous findings might not fully manifest and the scan could be falsely negative, still the abnormal spermatic cord can be seen as well on spectral doppler the arterial flow will be either absent or reversed diastolic flow.
-In Case of Torsion- De-torsion, rebound reperfusion with hyperemia may make the diagnosis difficult and confusing, so regular monitoring and re-scan could help in reaching the diagnosis (6,9).
Video explaining the findings on PoCUS and spectral doppler wave :
It’s the commonest presentation of pediatric testicular pain. This appendage is usually pedunculated and is present in more than 80% of children. It is located at the superior aspect of the testis in the groove between the testicle and the epidydimal head.
Findings:
Always try to scan the Epididymis from head to tail (some infection may be limited to the tail) then compare the findings to the unaffected site.
Findings:
The primary infection might get complicated and develop Abscess or Pyocele or end up with infarction and reversal arterial diastolic flow (6,9).
It’s a polymicrobial necrotizing fasciitis of the perineal, perianal, or genital areas. This diagnosis is clinical though the characteristic crepitus could only be found in 19-64% of cases. It’s critical that if this diagnosis is suspected, treatment should not be delayed for imaging confirmation. The modality of choice for diagnosis is CT scan (12).
Findings on US:
The American Urological Association recommends surgical exploration in case of testicular trauma to delineate the extent of injury and should be within 72 hours as the rate of salvage up to 90% of blunt testicular rupture cases; But when surgery is delayed beyond this time point, the orchiectomy rate is 45%. (6,9)
Disruption of the testicular parenchyma with preserved testicular shape and integrity of the hyperechoic tunica albuginea. The fracture plane appears as an avascular linear hypoechoic band extending across the parenchyma.
It’s critical to identify blood flow on color doppler to determine salvageability(9,10).
Depend on the chronicity of the evolving blood products; hematoceles and focal testicular, epididymal, and scrotal wall hematomas are acutely hyperechoic with decreasing echogenicity and increasing complexity (septa, loculations, and fluid levels) as they evolve to subacute and chronic phases. Hematomas have no internal flow on color and power Doppler images(9,10).
EM Physician, PoCUS Fellow
Reviewed by Dr. David Lewis
Copyedited by Dr. Rawan Alrashed
Lower extremity deep vein thrombosis (DVT) is a common, and potentially life-threatening vascular condition, with an annual incidence of 1 per 1000 adults. If left untreated, it may progress to pulmonary embolism, which is associated with a higher mortality. Therefore, accurate and timely diagnosis and treatment are incredibly important. (1,2,3)
An initial approach to the diagnosis of DVT involves risk stratification, often with the clinical risk score “Well’s score”, in conjunction with D-dimer assays. Based on the associated pre-test probability of the above risk stratification, further imaging may be required.
Although the gold standard for the diagnosis of DVT has traditionally been contrast venography, Duplex ultrasonography has become the standard of care due (in large part) to its lack of radiation and intravenous contrast, as well as widespread availability. This elective scan evaluates from groin to ankle and can take upwards of 1 hour depending on the difficulty of the individual exam. Studies have shown that a simplified ultrasound technique, limited to proximal segments of the femoral and popliteal veins using compression alone has a high sensitivity and specificity for proximal DVT detection. (2,4)
Point of care ultrasound (POCUS) has been increasingly used by emergency room physicians to assess for proximal lower extremity DVTs, with studies finding comparable diagnostic accuracy to radiology or vascular lab-performed duplex ultrasonography for detection of proximal DVT. (2)
The venous anatomy of the lower limb is relatively simple. The most proximal vein of interest is the Common Femoral Vein (CFV), which gives off the great saphenous vein (a superficial branch). Distal to this, the Common Femoral Vein should bifurcate into the Deep Femoral Vein, and Femoral Vein.
N.B: the Femoral Vein also known as the Superficial Femoral Vein, but because it is still considered a deep vein with respect to the diagnosis of deep vein thrombosis, it is usually referred to as simply the Femoral Vein.
As the femoral Vein travels distally, it enters the adductor canal, passing posterior to the knee, and becomes the popliteal vein. The popliteal vein gives rise to three deep veins at the level of the calf: the perineal vein, anterior tibial vein, and posterior tibial vein. (5)
There are multiple POCUS protocols with respect to lower extremity DVT evaluation, ranging from a 2-point ultrasound scan to a whole leg protocol. The more commonly studied, and utilized, protocols in the emergency department are referred to as the 2-point compression study and 3-point compression study. (1,2,5)
(It should be noted that the “points” are regions being scanned, opposed to distinct, singular points).
This study evaluates the:
The common femoral vein is evaluated from the inguinal ligament until it becomes the femoral vein, including the junction of the common femoral vein and greater saphenous vein (CFV-GSV). Ensure this scan includes at least 1-2cm above and below the CFV-GSV junction. (2)
The popliteal vein is assessed from the popliteal fossa until it trifurcates. (2)
This technique evaluates the:
Like the “2-point” examination, the common femoral vein is evaluated from the inguinal ligament until it becomes the femoral vein (including the CFV-GSV junction). The femoral vein is then further evaluated at least 2 cm distal to the bifurcation of the femoral vein and deep femoral vein. Some variations on the 3-point protocol may suggest continued evaluation of the femoral vein distally as it transitions to the popliteal vein. (2,4,5)
The linear array is the probe of choice for this scan.
4. After that slowly slide the probe distally, stopping every centimeter (or every width of the probe head), to compress the vein, ensuring it flattens completely. The end point of the scan is 1-2 cm distal to the bifurcation of the common femoral vein into the deep femoral vein and femoral vein. (4,5)
a. Within the first 1-2 cm, the great saphenous vein will branch off from the common femoral vein, usually medially and near field. Monitor the compressibility of both the common femoral vein, as well as the first 1-2 cm of the great saphenous vein.
b. The common femoral vein should bifurcate into the deep femoral vein, and femoral vein 1-2 cm distal to the CFV-GSV junction. Ensure compressibility is assessed at least 1-2 cm distal to the bifurcation if the common femoral vein. Consider continuing to scan distally until the femoral vein becomes the popliteal vein or are no longer able to assess.
Continue scanning distally (assessing compressibility along the way), until the popliteal vein trifurcates into the anterior tibial, posterior tibial, and peroneal vein. This marks the end of the examination. (4,5)
If the veins are difficult to identify or compress, color doppler can be applied. With the probe held stationary over the vessel in question, gently squeeze the calf distal to the probe. This should augment blood flow into the vein of interest and appear (briefly) as a brighter signal. If there is no increase in blood flow seen, a DVT could be present. (3,5)
Of note, normal venous flow will also change with the respiratory cycle. As the intrabdominal pressure increases with inspiration, venous return from the lower extremities will decrease, while with expiration, flow increases. This can be appreciated with spectral doppler. (3)
Failure to completely collapse the vein (with enough pressure to partially compress the adjacent artery), at any level, is highly suggestive for the presence of a clot.
Depending on the chronicity of the clot, it may appear echogenic enough to directly visualize under ultrasound, but this is not always the case. (3,4,5)
A meta-analysis published in 2019, looked at 16 articles utilizing either 2-point compression or 3-point compression and found comparable sensitivities and specificities for proximal DVT, with no statistically significant difference (1):
Sensitivity 91%
Specificity 98%
Sensitivity 90%
Specificity 95%
Although there was no statistically significant difference between tests, many clinicians still recommend performing the 3-point compression, to include visualization of the femoral vein.
Other studies have quoted sensitivities ranging from 93% to as high as 100% (3).
It’s important to note that compression ultrasound alone is not accurate at picking up below-knee DVT. It is rare for below-knee DVT to progress to pulmonary embolism without first extending to an above-knee DVT. Therefore, although proximal DVT is of more clinical significance in the emergency department, a negative proximal PoCUS DVT scan should be followed by a repeat scan in 5-7 days to ensure a below-knee DVT was not missed. (3)
One in three patients with untreated DVTs will progress to clinically significant pulmonary emboli, thus diagnosis and treatment of DVT is vitally important.
Although a positive scan is very helpful, a negative scan does not rule out a thrombus, specifically a below-knee DVT, which can propagate to an above-knee DVT, and eventually a PE given time.
Multiple diagnostic approaches have been described, incorporating the DVT PoCUS scan, well established risk stratification tools (Such as Well’s criteria), and repeat imaging. Below is one such approach, adapted from Mazzolai 2017. (5,6)
DVT PoCUS is a (relatively) simple scan, that can be performed quickly and used to assess for proximal DVT. Its utility is well recognized, and it is considered one of the core ultrasound applications for emergency medicine physicians by the American College of Emergency Physicians.
When assessing for DVT, the PoCUS scan should be incorporated into a diagnostic algorithm along with other risk stratification tools, and due to its low sensitivity for below-knee DVT, repeat imaging in the context of a negative scan may be warranted.
References
Dr. Renee Kinden, PGY2 EM