Streptococcal pharyngitis

Streptococcal pharyngitis 

Medical Clinical Pearl (RCP) February 2020

Nicholas Relja – MS2 Dalhousie Medicine New Brunswick

Reviewed by Dr. Kavish Chandra

 

Streptococcal pharyngitis

Streptococcal pharyngitis (strep throat) is an infection characterized by inflammation of the posterior pharynx and tonsils. Most pharyngitis cases are viral. Strep throat is caused by Streptococcus pyogenes (group A β-hemolytic streptococci) and spread by direct or close contact.

Symptom onset in streptococcal infection is usually abrupt and includes intense sore throat, fever, chills, malaise, headache, tender enlarged anterior cervical lymph nodes, and pharyngeal or tonsillar exudate. Cough, coryza, conjunctivitis, and diarrhea are uncommon, and their presence suggests a viral cause.

Other bacteria such as non–group A β-hemolytic streptococci and fusobacterium may also cause pharyngitis. S. pyogenes is the most clinically important due to potential serious post-infection complications such as acute rheumatic fever and post-streptococcal glomerulonephritis1–3

 

Diagnosis

A diagnosis of pharyngitis is made by careful review of a patient’s medical history and by physical examination. Throat culture remains the gold standard for diagnosing streptococcal pharyngitis and has a sensitivity that ranges from 90% to 95%. To obtain a sample, the posterior pharynx and tonsils are swabbed and then plated for culture. Throat culture results are usually ready within 2-3 days. If the result is negative, antibiotics are generally not indicated whereas when test results are positive, treatment ensues. False positive results are also possible due to chronic S. pyogenes colonization.3

 

Even though streptococcal pharyngitis is diagnosed by use of laboratory testing, there have also been clinical scoring systems developed to aid in stratifying risk of S. pyogenes infection4,5.

 

The Centor score, first proposed in 1981, has been since used to develop the Modified Centor Score (also known as the McIsaac Score or the McIsaac Modification of the Centor Score), which helps predict the probability of streptococcal pharyngitis by taking into account a patient’s age3,6–8.

 

Presence of fever, cough, tender anterior cervical adenopathy, tonsillar swelling or exudate, and patient age are listed as part of the criteria. The helpful mnemonic M-CENTOR is used for the McIsaac Score and includes criteria for scoring as shown below.9

 

Must be older than 3 years old
Cough — No Cough (+1)
Exudates or Swelling — Tonsillar exudates/swelling (+1)
Nodes — Anterior Cervical adenopathy (+1)
Temperature — Hx of fever or Temperature >38 (+1)
Only Young — patients <15yo (+1)
Rarely Elder — Patients >45 (-1)

 

The approach to using this scoring system is based on the results of the cumulative score. A score of ≤ 1 indicates that no further diagnostic testing or antibiotic treatment in indicated.

 

With a score of 2 or 3 rapid antigen detection testing (RADT) and/or throat culture is indicated. However, some studies have shown that there is controversy as to what the best tests and treatments are for at a score of 2 or 310,11.

At a score of ≥ 4 empiric antibiotics are mainstay. The following figure is a

Continue Reading

PoCUS Guided Nerve Blocks in EM

Recommended resources  for PoCUS Guided Nerve Blocks in EM

This page is under maintenance – future updates will include a ‘Plan A‘ list of blocks with associated guides.

EMSJ Resources

Collection of our nerve block guidelines, clinical pearls and rounds

Fascia Iliaca Block

Serratus Anterior Plane Block

Dental Block

Regional Anesthesia of the Hand

Other Resources

Local Anesthetic Dose

LAST

Overview of Common Nerve Blocks in the ED

Continue Reading

Clinical Pearl Library

Cardiovascular

Ear, Nose, & Throat

Environmental

Infectious Disease

Neurological

Pediatrics

Procedures

Respiratory

Surgical

Ultrasound

Trauma

Continue Reading

Why are ER wait times so bad in Canadian cities?

In this new Globe and Mail Podcast, we hear from Dr. Paul Atkinson and others who continue to provide their insights into the issues relating to increased Emergency Department wait times and expand on the widely read article “Saving Emergency Medicine: Is less more?”

You can listen to this podcast here:

Further reading and podcasts relating to Saving Emergency Medicine can be accessed here:

Saving EM

 

Continue Reading

Approach to Inguinal and Femoral Hernias in the Emergency Department

Medical Student Pearl

Julia Short

Med 2

DMNB Class of 2025

Reviewed by Dr D Lewis

Copy Edited by Dr. J Vonkeman

PDF Download: EMSJ Approach to Inguinal and Femoral Hernias in the ED by JShort


Case

A 52-year-old male patient presents in the ER with a lump in their right groin. The lump protrudes when they cough and when laying on their left side, although it re-enters the abdomen on its own. You wonder if it could be a femoral or an inguinal hernia, and how to go about differentiating between the two.


Introduction

A hernia is defined as an organ, or part of an organ, that protrudes through the body wall in which it is normally contained. The etiology of a hernia can be due to congenital anatomical malformations or from acquired weakening of the body wall tissues. There are various subtypes of abdominal hernias, while groin hernias consist of inguinal and femoral hernias. Throughout their lifetime, males have a 27 to 43% chance of developing a groin hernia, while females have a 3 to 6% lifetime prevalence1. Although it is much more likely that a groin hernia is inguinal in nature (they account for 96% of groin hernias), it is clinically useful to identify and distinguish between the types of groin hernias. Additionally, there are important clinical features that must not be overlooked when characterizing a groin hernia.


Distinguishing inguinal from femoral hernias

An important landmark in determining the hernia origin is the inguinal ligament. Inguinal hernias protrude superior to the inguinal ligament, while femoral hernias present inferior to the inguinal ligament (Figure 1). This is because femoral hernias protrude from the femoral ring, located medial to the femoral vein. As a result, in males, femoral hernias will never course into the scrotum. Femoral hernias also present more lateral than inguinal hernias and may be difficult to differentiate from lymph nodes. Although they account for only 3% of all groin hernias, 40% of femoral hernias present as urgent due to bowel strangulation or incarceration1. Females are more likely to develop femoral hernias, while males are more likely to develop inguinal hernias.

Figure 1. Groin anatomy © 2023 UpToDate7


Distinguishing between direct and indirect inguinal hernias

Direct inguinal hernias originate medially, near the pubic tubercle and external inguinal ring. They protrude through Hesselbach’s triangle as a result of weakness in the floor of the inguinal canal. On exam, a bulge near the external (superficial) inguinal ring is suggestive of a direct inguinal hernia. In contrast, indirect inguinal hernias protrude near the midpoint of the inguinal ligament, at the internal (deep) inguinal ring (Figure 2). In males and females respectively, the internal inguinal ring is where the spermatic cord and round ligament exit the abdomen. A bulge in this area therefore suggests an indirect inguinal hernia. This type of hernia is the most common in all ages and sexes, accounting for approximately two thirds of all inguinal hernias2. In males, the indirect hernia often courses into the scrotum, which can be palpated if the patient strains or coughs. In contrast, it is rare for a direct hernia to course into the scrotum.

Figure 2. Anatomical comparison of direct and indirect inguinal hernias © 2020 Dr. Vaibhav Kapoor8


Clinical Approach

General considerations for investigating groin hernias include assessing the symptoms at presentation as well as any “red flag” physical findings. Patients commonly complain of dull or heavy types of discomfort when straining, which resolves when straining stops. Most groin hernias occur on the right side. Common physical findings include a bulge in the groin, which can indicate the type of hernia based on location relative to the inguinal ligament (Figure 3). However, in female or obese patients, the layers of abdominal wall may make the hernia more difficult to locate. In these cases, ultrasound or other imaging is needed to detect hernias. Clinicians should also determine if the hernia is reducible, or if the herniated bowel can be returned to the abdominal cavity when moderate pressure is applied externally.

Figure 3. Locations of femoral and inguinal hernias on examination © 2023 UpToDate7

 

Physical examination has a 76 to 92% sensitivity and 96% specificity for diagnosing groin hernias, although imaging may also be required1,2. Nausea, vomiting, fever, moderate-to-severe abdominal pain, localized tenderness, or bloating may indicate more sinister pathology such as bowel incarceration (when the hernia contents cannot return to the abdominal cavity), strangulation (when the blood supply to the involved bowel section is compromised) or necrosis.

Figure 5. CT images of A) femoral hernia (courtesy of Chris O’Donnell9 and B) inguinal hernia (courtesy of Erik Ranschaert10)


Management

Uncomplicated or asymptomatic hernias in males can be monitored through watchful waiting. Surgical repair is a definitive treatment for inguinal hernias and should be considered for symptomatic or complex hernias. If repair is needed for an uncomplicated inguinal hernia, a laparoscopic repair is recommended. Watchful waiting is not recommended for femoral hernias – these patients should have a laparoscopic repair (when anatomically feasible).

Manual reduction of the hernia can be performed by following the GPS Taxis technique. Taxis is a non-invasive technique for manual reduction of incarcerated tissues in a hernia to the original compartment5. “GPS” is an acronym to remind clinicians to be gentle, be prepared, and be safe when performing taxis5. Conscious sedation with intravenous diazepam and morphine is recommended for the procedure. Consider having an anesthetist present for the procedure if the patient is frail. Provide appropriate early resuscitation by monitoring vital signs, administering oxygen therapy and establishing IV access. Place the patient in Trendelenburg position. Begin the GPS Taxis technique by palpating the fascial defect around the base of the hernia and gently manipulating hernia contents back into the abdominal cavity. Use gentle manipulation pressure over 5-10 minutes until a gurgling sound is heard (indicating successful reduction of bowel).

 

Taxis guided by ultrasound may increase success rates for reduction.

https://sjrhem.ca/taxis-reduction-of-inguinal-hernia/

Figure 4. Colourized clip demonstrating PoCUS assisted Taxis reduction of an inguinal hernia11

 

It should be noted that the major contraindication to performing GPS Taxis is bowel strangulation within the hernia. A rare but serious complication of manual reduction is reduction en masse, when a loop of bowel remains incarcerated at the neck of the hernia after manual reduction6. This can lead to early strangulation, intestinal necrosis, sepsis, organ failure and death. Femoral hernias and indirect inguinal hernias are at higher risk of reduction en masse from manual reduction attempts.


References:

  1. UpToDate – Classification, clinical features, and diagnosis of inguinal and femoral hernias in adults
  2. Hammoud M, Gerken J. Inguinal hernia. StatPearls. 2022 Aug 15.
  3. UpToDate – Overview of treatment for inguinal and femoral hernia in adults
  4. Bates’ Guide to Physical Examination and History Taking, 12th ed. (pdf). Chapter 13: Male Genitalia and Hernias
  5. Pawlak M, East B, de Beaux AC. Algorithm for management of an incarcerated inguinal hernia in the emergency settings with manual reduction. Taxis, the technique and its safety. Hernia, 25, 1253-1258. 2021 May 25.
  6. Yatawatta A. Reduction en masse of inguinal hernia: a review of a rare and potentially fatal complication following reduction of inguinal hernia. BMJ Case Rep. 2017 Aug 7.
  7. UpToDate – Classification, clinical features, and diagnosis of inguinal and femoral hernias in adults
  8. Kapoor, V. Difference between and inguinal and umbilical hernia. 2020. Retrieved from: https://www.drvaibhavkapoor.com/difference-between-inguinal-and-umbilical-hernia.html
  9. Patel, MS. Femoral hernia. Radiopaedia. 2022 Dec 28. Retrieved from: https://radiopaedia.org/articles/femoral-hernia
  10. Fahrenhorst-Jones, T. Inguinal hernia. Radiopaedia. 2022 Apr 12. Retrieved from: https://radiopaedia.org/articles/inguinal-hernia
  11. PoCUS assisted Taxis reduction of an inguinal hernia. Video obtained courtesy of Dr. David Lewis.

Continue Reading

External CPD Links

 

Continue Reading

Management of Supraventricular Tachycardia (SVT) in Pregnancy

 

Management of Supraventricular Tachycardia (SVT) in Pregnancy

Medical Student Clinical Pearl

 

Tyson Fitzherbert, DMNB Class of 2024

Reviewed by Dr. Luke Taylor and Dr. David Lewis

 


Case:

A 30-year-old pregnant (32 weeks) female presents to the emergency department with palpitations and chest discomfort. On ECG they are diagnosed with supraventricular tachycardia, a narrow complex arrythmia – how would you proceed?

 


Introduction:

Pregnant women have a higher incidence of cardiac arrhythmias. The exact mechanism of increased arrhythmia burden during pregnancy is unclear, but has been attributed to hemodynamic, hormonal, and autonomic changes related to pregnancy. A common arrhythmia in pregnancy is supraventricular tachycardia (SVT). SVT is a dysrhythmia originating at or above the atrioventricular (AV) node and is defined by a narrow complex (QRS < 120 milliseconds) at a rate > 100 beats per minute (bpm). The presentations of SVT in pregnancy are the same as the nonpregnant state and include symptoms of palpitations that may be associated with presyncope, syncope, dyspnea, and/or chest pain. Diagnosis is confirmed by electrocardiogram (ECG).

 


Figure 1: Rhythm strip demonstrating a regular, narrow-complex tachycardia, or supraventricular tachycardia (SVT).

In general, the approach to the treatment of arrhythmias in pregnancy is similar to that in the nonpregnant patient. However, due to the theoretical or known adverse effects of antiarrhythmic drugs on the fetus, antiarrhythmic drugs are often reserved for the treatment of arrhythmias associated with clinically significant symptoms or hemodynamic compromise. Below is a detailed description of the management of SVT in pregnancy.

 


Management:

Figure 2: Treatment algorithm for SVT in pregnancy.

 


General Considerations:

  • Non‐pharmacological treatment including vagal manoeuvres such as carotid massage and Valsalva manoeuvre are well tolerated and aid in management.
  • Intravenous adenosine can be used in all three trimesters, including labor.
  • Electrical cardioversion is an effective treatment method for hemodynamically unstable or drug-refractory patients, which has proven to be safe in all three trimesters, including labor. There are some examples of this leading to pre-term labor in the third trimester.
  • AV nodal blocking agents and anti-arrhythmic agents may be considered for cardioversion; see table below for effects in pregnancy and breast feeding.

 

 


Case Continued:

A modified Valsalva manoeuvre is performed with resolution to sinus rhythm after 2 attempts. The patient is discharged with OBGYN follow-up.

https://sjrhem.ca/modified-valsalva-maneuver-in-the-treatment-of-svt-revert-trial/

 


Further Reading


References:

  1. Patti L, Ashurst JV. Supraventricular Tachycardia. [Updated 2022 Aug 8]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan-. Available from: https://www-ncbi-nlm-nih-gov.ezproxy.library.dal.ca/books/NBK441972/
  2. UpToDate – https://www.uptodate.com/contents/supraventricular-arrhythmias-during-pregnancy#H11407709
  3. Ibetoh CN, Stratulat E, Liu F, Wuni GY, Bahuva R, Shafiq MA, Gattas BS, Gordon DK. Supraventricular Tachycardia in Pregnancy: Gestational and Labor Differences in Treatment. Cureus. 2021 Oct 4;13(10):e18479. doi: 10.7759/cureus.18479. PMID: 34659918; PMCID: PMC8494174. https://www-ncbi-nlm-nih-gov.ezproxy.library.dal.ca/pmc/articles/PMC8494174/
  4. Ramlakhan KP, Kauling RM, Schenkelaars N, et al, Supraventricular arrhythmia in pregnancy, Heart 2022;108:1674-1681. https://heart.bmj.com/content/early/2022/01/26/heartjnl-2021-320451#T2
  5. Goyal A, Hill J, Singhal M. Pharmacological Cardioversion. [Updated 2022 Jul 25]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan-. Available from: https://www-ncbi-nlm-nih-gov.ezproxy.library.dal.ca/books/NBK470536/
  6. Vaibhav R. Vaidya, Nandini S. Mehra, Alan M. Sugrue, Samuel J. Asirvatham, Chapter 60 – Supraventricular tachycardia in pregnancy, Sex and Cardiac Electrophysiology. https://www-sciencedirect-com.ezproxy.library.dal.ca/science/article/pii/B9780128177280000607

 

 

 

 

 

Continue Reading

Pediatric Hip Dislocation & Reduction

Pediatric Hip Dislocation & Reduction

Resident Clinical Pearl (RCP) – November 2022

Dr. Nick Byers , R2 iFMEM, Dalhousie University, Saint John, New Brunswick

Reviewed/Edited by Dr. Brian Ramrattan


Case:
A 10 year old presents to the local emergency department after playing with their sibling. The child was “tackled” from behind. A history and physical exam inform you that the child has been healthy until now with a completely uneventful childhood. They are normal, healthy body habitus and laying on their right side, a pillow between their flexed left knee & hip, and straight right leg. This is the only position of comfort for the child. Neurovascular exam is normal and the child refuses to let you move the leg at all. Foot and ankle move normally. Xrays were obtained promptly. A dislocated hip was readily identified (note the arrow sign below).


Greater than 85% of traumatic pediatric hip dislocations are posterior. Male children are at a greater risk by a 4:1 ratio, and in younger patients, they often occur with minimal force, whereas older children tend to require much greater forces due to the strength of structures surrounding the joint. Fractures can be an associated injury, though it was not in this case. A general triad to consider when evaluating for posterior dislocation is an adducted, shortened, and internally rotated leg as seen below:


Treatment:

A simple dislocation should be treated with closed reduction under sedation, ideally within six hours of injury to reduce the risk of osteonecrosis of the femoral head.


Reduction techniques:

There are many reduction techniques discussed in the literature. Most involve in-line traction of the femur with abduction and external rotation as the leg lengthens, with counter-traction (or downward pressure) placed on the pelvis. This allows for the femoral head to enter the acetabulum gently.

A quick review of technique with attending staff present on shift included the following three options:

  1. The Allis maneuver (https://www.youtube.com/watch?v=zmk3vafjAd4): The physician stands on the stretcher with arms hooked under the flexed knee & hip (both at 90o) on the injured side and an assistant provides downward pressure on the pelvis. Hip extension and external rotation can be applied as the hip reduces.

2.  The Captain Morgan technique (https://www.youtube.com/watch?v=lQMWaFX-MeQ&t=6s): The physician flexes the injured hip and knee to 90o and places their foot on the stretcher at the injured hip of the patient, their knee under the patients. They then grasp the patient’s leg with one hand under the popliteal fossa and one at the ankle. With counter-traction/downward pressure on the pelvis by an assistant, the physician plantar-flexes their foot to put traction on the patient’s femur. External rotation and abduction can be applied with the lower leg as the hip is reduced.

3. The cannon technique: The stretcher is raised and the patient’s knee and hip are flexed to 90o with the popliteal fossa sitting directly over the physician’s shoulder, hands on the patient’s ankle (while facing the patients feet). An assistant stabilizes and provides downward pressure on the pelvis. The physician slowly stands up straight providing in-line traction on the femur until the hip is reduced.


Case Conclusion:

Once x-rays confirmed a posterior hip dislocation, closed reduction under sedation in the emergency department was performed by a resident and staff physician using the cannon technique. Post-reduction films and repeat neurovascular exams were normal and follow-up with orthopedics was in place before discharge home.

Post reduction film:


References:

https://www.merckmanuals.com/professional/injuries-poisoning/dislocations/hip-dislocations

https://www.emnote.org/emnotes/captain-morgan-hip-reduction-technique

CASTED course manual, Arun Sayal

Traumatic hip dislocation during childhood. A case report and review of the literature. American Journal of Orthopedics (Belle Mead, N.J.), 01 Sep 1996, 25(9):645-649

https://usmlepathslides.tumblr.com/post/64398003332/posterior-hip-dislocation-posterior-hip

https://posna.org/Physician-Education/Study-Guide/Hip-Dislocations-Traumatic

https://www.ochsnerjournal.org/content/18/3/242/tab-figures-data

https://coreem.net/core/hip-dislocation/

https://westjem.com/case-report/emergency-physician-reduction-of-pediatric-hip-dislocation.html

Continue Reading

Vascular Access In Children: Solve the Puzzle

 

Dr. Rawan Alrashed (@rawalrashed)

PEM Physician

PoCUS Fellow

Reviewed and edited by: Dr. David Lewis

 

Background

Pediatric vascular access is one of the challenging skills in the medical field especially during an emergency, different guidelines have been established to facilitate the choice of the proper IV access one of which is the miniMAGIC that was published in 2020.1 Choosing the right access is crucial for success taking in consideration the urgency of access, patient safety, infused fluid characteristic  to determine the right one especially with a peripheral IV catheter failure rate of 77% in the first attempt.2 Difficult intravenous Access score (DIVA) is one of the tool that can be used to evaluate the feasibility of a peripheral IV and accordingly, the best next step for IV line insertion where Subjects with a DIVA score of 4 or more were more than 50% likely to have failed intravenous placement on first attempt.3

 

Figure-1: DIVA score.4

Types of vascular access

  • Peripheral IV catheters (PIVCS)
  • Intraosseous Access
  • Central Venous Catheters (CVCs) (Non-tunneled) 
  • US guided Access
  • Umbilical Catheter
  • Surgical cutdown

 

Figure 2: Vascular Access Locations.5

Consideration in pediatrics4

  • Pain management is a critical step for the success of IV cannulation

Multiple choices are available starting from non-pharmacological distraction technique and non-nutritive sucking to the utilization of local anesthetic such as EMLA and LMX as well the needle-free lidocaine jet-injection

  • Enhancing visualization of vein by using tourniquet, transilluminator with any available light source.
  • Ultrasound guided peripheral IV access is the recommended current practice in difficult access.
  • Ultrasound guided central IV access is the standard of care currently in comparison to anatomical landmark in critical care setting.

Indication of IV access

Patient resuscitation.

Delivering fluids, medication, Blood sampling.

Hemodynamics monitoring as well arterial blood gas.

Contraindications

Infection at the insertion site.

Thrombosis of the vein.

Bleeding diathesis in central line is a relative contraindication.

In IO Access, fracture on the same bone as well pathological disorder predisposing to fractures is a contraindication.

Peripheral IV catheter (PIVC)

Different veins can be used for PIVC starting with dorsal veins of the hand, then the feet and then proceeding to other choices including scalp vein in infants, external jugular vein, antecubital and the great saphenous vein as in Figure-2.5

Technique:5

  1. Prepare instruments: cleansing solution, tourniquet, catheter needle, connecting tube, flush, dressing, gauze, and stabilizer tape.
  2. Size of catheter as in the table: utilize the smallest gauge and shortest catheter as possible with exception in resuscitation where larger bore gauge is preferable or in case of midline cannulation where longer catheter is preferable.
  3. Apply tourniquet proximal to the site of insertion to enhance visualization
  4. Identify proper vein by visualization, palpation and utilizing the transilluminator or infrared light
  5. Clean the skin as per the facility protocol
  6. Hold the needle between the thumb and forefinger with the dominant hand and stretch the skin with the other hand
  7. Enter with an angle of 10-30 degree then if blood seen shallow your angle to advance 1-2 mm then advance the catheter and once in pull your needle or retract it.
  8. Flush to confirm patency and no swelling at the site then stabilize your catheter

 

Neonate  Infant   Children Length
PIV 24-26G 22G 20G 2-6cm
Midline Access 22G 22G 20G 15-30cm

 

Table-1: Size of PIV catheter.

 

US guided peripheral vascular access

A recent RCT by Vinograd et.al. evaluated 167 children showed 85% success rate of first attempt with US guidance compared to 45% with traditional methods. Also US guidance resulted in shorter cannulation time, less redirection and fewer attempts.6 

Important consideration in US- guided PIV

  • The diameter and depth of the vein have been found determinate factors for success of cannulation in adult studies where very superficial (< 0.3 cm) and very deep (> 1.5 cm) veins are difficult to cannulate.7
  • The suggested veins are the cephalic vein in the forearm or the saphenous vein at the medial malleolus, while the antecubital vein might be an easy approach but the risk of brachial artery cannulation and the elbow bending make it less favorable. 7

Technique 7

  • Use a linear probe with 5-15 MHz ( Alternatively a hockey stick or MicroConvex might be useful)
  • Identify the vein and assess patency by being compressible and non pulsatile, for further confirmation utilize color or pulse wave doppler with augmentation to identify low status flow.

Longer catheter are preferable when using ultrasound guided insertion especially with a vein deeper then 0.5 cm to minimize the risk of dislodgment and infiltration (suggested to be longer than 2 cm). In a pilot study by Paladini, long catheter > 6 cm were associated with lower risk of failure in pediatric patients more than 10 years comparable to the short one <6 cm.8

  • Static or dynamic guidance are acceptable with preference of the latter. 
  • Two approach technique available with best outcome observed with out-of-plane in PIVC.

 

Out-of-plane (Short-Axis):
  • Consider using the middle point on the ultrasound machine to enhance alignment
  • The US wave perpendicular at right angle to the vessel.
  • The needle is inserted close to the probe at 20-30o angle then advance with meet and greet technique or dynamic needle tip positioning technique as in video

 

 

Pitfalls:

  • The needle shaft might be misidentified as the needle tip thus the importance of advancing the probe then the needle to maintain visualization of the tip only.  Also sweeping in the same plane can help to follow the needle proximal and distal to confirm the tip from the shaft.
  • Risk of posterior wall penetration and failure of cannulation.

 

In-Plane (Long-Axis):
  • The US beam is parallel to the vessel.
  • The whole needle shaft is visualized during insertion and advancement to the vein.
  • To facilitate visualization of needle “Ski left” technique can be used.

 

 

Pitfalls:

  • Maintaining the transducer static without any movement is difficult in small children as any movement would lead to loss of needle visualization, thus insertion will not be accurate (side lobe artifact)

No evidence of preferable technique in pediatrics but in adults out-of-plane proven to be superior for PIVC insertion.

 

How to Use US for PIVC:

https://www.coreultrasound.com/ultrasound-guided-peripheral-iv-access/

 

Intraosseous Access

It’s considered the best alternative IV access in emergencies (peri-arrest and arrest condition) after 2 failed attempts of PIVC within 60-90 seconds, AHA recommends IO catheter as first line access in cardiac arrest. Still the outcome of out of hospital cardiac arrest and best access need more delineation.4,5

Technique4

  • IO access can be accomplished using a manual needle or battery powered device such as EZ-IO or even a regular large bore needle.
  • Place the knee in slight flexion with padding.
  • Clean the skin and consider analgesia according to the urgency of the situation.
  • Insert the needle at 900 over the skin.
  • Remove the stylet and aspirate then infuse saline.
  • Confirmation of proper insertion by the needle standing still even if no backflow seen with lack of extravasation during fluid infusion.

Figure-2 (on green)  shows the possible site for IO insertion where the commonest one is the proximal tibial shaft about 1-2 cm from the tibial tuberosity avoiding the growth plate.

Complication4

  • IO needle is a temporary access that can not last for more than 24 hours
  • Longer use can predispose the child to complication including infection, thrombosis, fat embolism
  • Other complications of insertion include through-and-through penetration of the bone, physeal plate injury, pressure necrosis of the skin, compartment syndrome, osteomyelitis, subcutaneous abscess

 

Confirmation of IO by POCUS2

  • Use linear probe distal to the insertion site
  • Apply color doppler and observe for saline flush site
  • If above the bony cortical site or lateral or deep may indicate misplacement

 

Figure-3: POCUS confirmation of IO site.

 

 

Central IV Catheter (CIVC)

This an alternative longer duration route that can be utilized as an emergency line but less favorable compared to the IO during initial resuscitation. It is still considered a good choice in ill patients with difficulty of PIVC and failure of US guided peripheral access as well IO when fluid, high concentrated electrolytes and vasopressors are needed.4

The common site for insertion of non-tunneled CVC in pediatric is the internal jugular in critical care setting with higher success rate compared to femoral vein9 , but the femoral vein might be the first choice in PEM as it’s easily accessible and don’t interfere with resuscitation measures.10

Technique10

Always prepare your equipment and check them, also get consent when possible before attempting a central line

 

Age(years) weight (kg) Catheter gauge French gauge length (cm)
<1y 4-8 24 3 5-12
<1y 5-10 22 3-3.5 5-12
1-3y 10-15 20 4 5-15
3-8y 15-30 18-20 4-5 5-25
>8y 30-70 16-20 5-8 5-30

Table-2: CVC sizes.4

Anatomical Landmark5

Internal Jugular vein:

  • Under aseptic technique with proper draping, put the patient in Trendelenburg position and turn the head slightly to the other side.
  • Use the medial head of the sternocleidomastoid muscle or between the tow head at the level of the thyroid cartilage just lateral to the carotid artery guide your needle on a 45o  toward the ipsilateral nipple while aspirating during insertion until you feel loss of resistance and have a backflow.
  • follow with the guidewire into your needle and then dilator
  • Complete by  inserting the catheter line and fixing it.

Subclavian vein:

Directly below the clavicle at the junction of the lateral one third with the medial two third directing the needle toward the sternal notch

Femoral vein:

1-2 cm below the inguinal ligament medial to the femoral artery, guide the needle toward the umbilicus

 

US Guided CVC

The use of ultrasound guided insertion is considered the standard of care for central line insertion. Ultrasound use reduces the number of attempts and procedure duration, increases the successful insertion rate, and reduces complications compared to the skin surface anatomic landmarks technique.9

This can facilitate visualization, increase the success rate with 95% first attempt success rate of ultrasound-guided venous punctures compared to 34% of the anatomical landmark and decrease the rate of complication that would occur with the anatomical landmark.11

 

  • Always start by identifying the land mark on US before starting the procedure (vein is compressible and less pulsatile than the adjacent artery)
  • Probe position according to the site of insertion.  
  • Prepare the patient under aseptic technique as well the probe with sterile sheet and the ultrasound counsel unless you have assistance.
  • Infiltrate local anesthesia to the skin puncture site.
  • Utilize sterile gel on the outside of the sterile sheet or alternatively sterile water or saline
  • Use an out of plane technique to guide the needle into the vein (higher success rate).
  • Start by inserting the needle at 45 degree angle from the probe and the same distance away as the vein from the skin
  • Follow the dynamic needle tip positioning technique (meet &greet) to keep visualizing the needle tip while guiding it toward the vein
  • If confusing the needle tip with the shaft try to slide the probe proximal and distal until confirmation
  • Use the same steps in aspirating while inserting until having a backflow and confirming the needle is inside the vein lumen
  • Complete the steps as before and confirm the position of the guidewire by ultrasound.
  • Insert the central catheter and fix it with sutures and transparent dressing.

 

Internal jugular vein:

Subclavian vein

Femoral vein

 

Complication12

Confirm proper placement by US as well X-Ray

R/O complication as pneumothorax, hemothorax or hematoma, mis-displacement

Artery puncture, air embolism, thoracic duct injury, arrhythmia are possible complications.

 

Umbilical Catheter

  • Can be used in neonate up to 7 days old.
  • Apply tourniquet to umbilical stump then cut the upper dried part.
  • Identify the vein which is single and thin walled while arteries are two and thick wall.
  • Stent the vessel with a forceps then insert the catheter up to 3-4 cm until blood return (Do NOT advance further as the risk of complication and adverse events are high)

 

Venous Cutdown

It is uncommon access in pediatric patients with the availability of IO needle, if needed the classic site is the saphenous vein which is 2 cm superior and anterior to the medial malleolus.

 

 

Resources:

  1. Ullman AJ, Bernstein SJ, Brown E, et al. The Michigan Appropriateness Guide for Intravenous Catheters in Pediatrics: miniMAGIC. Pediatrics. 2020;145(Suppl 3):S269-S284. doi:10.1542/peds.2019-3474I.
  2. Delacruz N, Malia L, Dessie A. Point-of-Care Ultrasound for the Evaluation and Management of Febrile Infants. Pediatr Emerg Care. 2021;37(12):e886-e892. doi:10.1097/PEC.0000000000002300.
  3. Yen K, Riegert A, Gorelick MH. Derivation of the DIVA score: a clinical prediction rule for the identification of children with difficult intravenous access. Pediatr Emerg Care. 2008;24(3):143-147. doi:10.1097/PEC.0b013e3181666f32.
  4. Whitney R, Langhan M. Vascular Access in Pediatric Patients in the Emergency Department: Types of Access, Indications, and Complications. Pediatr Emerg Med Pract. 2017;14(6):1-20.
  5. Naik VM, Mantha SSP, Rayani BK. Vascular access in children. Indian J Anaesth. 2019;63(9):737-745. doi:10.4103/ija.IJA_489_19.
  6. Vinograd AM, Chen AE, Woodford AL, et al. Ultrasonographic guidance to improve first-attempt success in children with predicted difficult intravenous access in the emergency department: a randomized controlled trial. Ann Emerg Med. 2019;74:19–27.
  7. Nakayama Y, Takeshita J, Nakajima Y, Shime N. Ultrasound-guided peripheral vascular catheterization in pediatric patients: a narrative review. Crit Care. 2020;24(1):592. Published 2020 Sep 30. doi:10.1186/s13054-020-03305-7.
  8. Paladini A, Chiaretti A, Sellasie KW, Pittiruti M, Vento G. Ultrasound-guided placement of long peripheral cannulas in children over the age of 10 years admitted to the emergency department: a pilot study. BMJ Paediatr Open. 2018;2(1):e000244. Published 2018 Mar 28. doi:10.1136/bmjpo-2017-000244.
  9. Pellegrini S, Rodríguez R, Lenz M, et al. Experience with ultrasound use in central venous catheterization (jugular-femoral) in pediatric patients in an intensive care unit. Arch Argent Pediatr. 2022;120(3):167-173. doi:10.5546/aap.2022.eng.167.
  10. Skippen P, Kissoon N. Ultrasound guidance for central vascular access in the pediatric emergency department. Pediatr Emerg Care. 2007;23(3):203-207. doi:10.1097/PEC.0b013e3180467780.
  11. De Souza TH, Brandão MB, Santos TM, Pereira RM, Nogueira RJ. Ultrasound guidance for internal jugular vein cannulation in PICU: a randomised controlled trial. Arch Dis Child. 2018; 103(10):952-6.
  12. Georgeades C, Rothstein AE, Plunk MR, Arendonk KV. Iatrogenic vascular trauma and complications of vascular access in children. Semin Pediatr Surg. 2021;30(6):151122. doi:10.1016/j.sempedsurg.2021.151122

 

Continue Reading