An EM Approach to Syncope in Adults

 

Medical Student Pearl

Samarth Fageria

Med 3

Memorial University of Newfoundland Class of 2024

Reviewed by Dr. J Gross

Copy Edited by Dr. J Vonkeman

Pdf Download: EMSJ An EM Approach to Syncope by SFargeria

 


Case

A 60-year-old male presented to the ED after experiencing recurrent episodes of syncope. The first episode occurred at a convenience store in an upright position. He denied prodrome and exertional activity at the time of syncope. After a transient loss of consciousness, he woke up confused with urinary incontinence. He felt nauseous and had emesis in the ambulance on the way to ED. He had two more episodes of syncope over the span of two hours. On assessment in the ED, he endorsed a past history of light-headedness preceded by laughing and holding his breath. He denied dyspnea and chest pain. He had no significant past medical history. There was no family history of cardiovascular disease and syncope, and social history was unremarkable.

 

On examination, he was alert and oriented. He had a minor laceration on his forehead from the fall. His respiratory and cardiovascular exams were unremarkable, neurological exam was normal. In the ED, his blood work was unremarkable. He was placed on telemetry when he had two more episodes of syncope. The monitor showed 20-second-long sinus pauses corresponding with the syncopal episodes. Cardiology was consulted and he was temporarily placed on intermittent transcutaneous pacing.

 

 


Differential Diagnosis of Syncope2

True Syncope

1. Reflex (autonomic hypersensitivity)

  • Vasovagal, carotid sinus hypersensitivity, situational

2. Orthostatic hypotension

  • Volume depletion, autonomic failure

3. Cardiac

  • Valvular (aortic stenosis, mitral stenosis), dysrhythmias (bradyarrhythmia, ventricular tachyarrhythmia, supraventricular tachyarrhythmia), mechanical (pacemaker dysfunction), cardiomyopathy, infiltrative (eg. hemochromatosis, sarcoidosis, amyloidosis), acute MI, ARVC, cardiac tamponade, acute aortic dissection

Other Causes

1. Medication/ Drug-induced

  • Anti-hypertensives, QT prolonging meds, insulin, alcohol, anti-depressants, anti-glycemic agents, diuretics, anti-anginal agents, etc

2. Transient Loss of Consciousness (TLOC)

    • Traumatic brain injury, seizure disorders, intoxications, hindbrain TIA, conversion disorders and metabolic abnormalities

 


Background

Syncope is defined as a brief, sudden, transient loss of consciousness due to cerebral hypoperfusion1. The three broad categories of syncope are reflex, orthostatic and cardiac syncope. The most common cause of cardiac syncope includes dysrhythmias1. A good past medical history of cardiovascular disease is important as it is 85-94% sensitive and 64-83% specific in predicting a cardiac etiology of syncope1.


Diagnostic Workup

Diagnostic workup for syncope requires a thorough history, physical exam, and a 12-lead ECG. Cardiac monitoring is necessary in patients that present to ER with an acute presentation of syncope, and a strong suspicion for cardiac etiology2. History should consist of identifying high-risk features that warrant a prompt cardiology consult2. A detailed HPI should consist of asking about an absence of a prodrome, exertional or supine syncope, concomitant trauma, past medical history of cardiovascular disease and family history of sudden cardiac death (<50 years)2. Low-risk features include presence of a prodrome, specific triggers (eg. dehydration, stress, laughter), syncope while upright and the absence of cardiovascular disease2. Vital signs and a cardiac exam should be completed2. If cardiac causes of syncope cannot be ruled out on first assessment, a 12-lead ECG should be placed to assess for dysrhythmias or conduction disease, and serial troponin values should be collected2.

 

Though there are multiple clinical decision rules for syncope, the following have been externally validated: Evaluation of Guidelines in Syncope Study (EGSYS), San Francisco Syncope Rule and Osservatorio Epidemiologico sulla Sincope nel Lazio (OESIL)1. Patients that are stratified as high risk require admission for further evaluation. EGSYS predicts the probability of cardiac syncope at two years based on abnormal ECG findings (eg. BBB, sinus bradycardia), heart disease (eg. ischemic, structural), palpitations before syncope, as well exertional and positional syncope, symptoms of prodrome (nausea/vomiting) and predisposing/precipitating factors1. An admission is warranted if the patient scores a three or higher as there is a 21% mortality risk at two years1. The OESIL risk score estimates a 1-year all-cause mortality in patients presenting with syncope1. The factors include age (>65), history of cardiovascular disease, lack of prodrome and abnormal ECG characteristics (eg. BBB, AV conduction disorders and hypertrophy)1. Admission is warranted for one or more variables1. The Canadian Syncope Risk Score can be used in patients presenting to ER with syncope to predict a 30-day serious adverse events2.  It consists of factors such as abnormal QRS axis, corrected QT interval >480 ms, elevated troponin (>99th percentile of normal population) and ED diagnosis based on evaluation to stratify patients into risk categories: very low (-3 to -2), low (-1 to 0), medium (1 to 3), high (4 to 5) and very high (6 to 11)2.

The Canadian Journal of Cardiology recommends a disposition algorithm for patients presenting to ER with syncope that is based on history of a serious medical condition and high-risk features3. Figure 1 illustrates an approach to disposition from the ER. Patients that have an unclear etiology and intermediate risk should be considered for an urgent cardiology assessment.

 

Figure 1: A disposition plan for patients presenting to the ER with syncope (Canadian Cardiovascular Society 2020).


Best Practice for Treatment

Given the benign course, treatment for vasovagal syncope is based on lifestyle modification, education and reassurance2. Lifestyle modification consists of educating patients on identifying and managing prodromes early and managing triggers (eg. dehydration, defecation, micturition, laughing, coughing and crowded environments)2.

Treatment for orthostatic syncope also relies on lifestyle modification, education and reassurance2. Lifestyle modification consists of re-adjusting diuretics, ACE-inhibitors, angiotensin receptor blockers, calcium channel and beta blockers to ensure optimal blood pressure and hydration control2.

Managing cardiac syncope requires addressing the underlying etiology through antiarrhythmic medications (eg. tachyarrhythmias), cardiac pacing (eg. bradyarrhythmias), catheter-directed ablation and ICD insertion1. Cardiac pacemaker therapy is indicated for patients that have intermittent sinus node disease if correlation is identified between sinus pauses on ECG and syncope3. Selected patients that are diagnosed with the bradycardia-tachycardia form of sick sinus syndrome, can benefit from a percutaneous cardiac ablative technique3.  Dual-chamber pacing is recommended for patients with sinus node dysfunction provided there is an increased risk of AV block4.


Case continued

The patient was admitted and had no further asystole after receiving atropine and intermittent transcutaneous pacing. He was accepted for a dual-chamber pacemaker insertion and was discharged with the diagnosis of syncope with sinus arrest and vagal overtones.


Take Home Points

  1. Patients presenting to the ER with new-onset syncope require a thorough history and physical exam to rule out cardiogenic causes.
  2. Validated clinical decision-making tools can be helpful to supplement clinical judgement for assessing the risk of a future cardiac event, identifying the need for a cardiology consult and creating a disposition plan.

References

  1. Runser LA, Gauer RL, Houser A. Syncope: Evaluation and Differential Diagnosis. Am Fam Physician. 2017;95(5):303-312. https://www.aafp.org/pubs/afp/issues/2017/0301/p303.html#:~:text=A%20standardized%20approach%20to%20syncope,%2C%20physical%20examination%2C%20and%20electrocardiography
  2. UpToDate. www.uptodate.com. https://www.uptodate.com/contents/syncope-in-adults-clinical-manifestations-and-initial-diagnostic-evaluation
  3. Sandhu RK, Raj SR, et al. Canadian Cardiovascular Society Clinical Practice Update on the Assessment and Management of Syncope. Can J Cardiol. 2020;36(8):1167-1177. doi:10.1016/j.cjca.2019.12.023 https://www.onlinecjc.ca/article/S0828-282X(19)31549-1/fulltext
  4. Brignole M, Moya A, de Lange FJ, et al. 2018 ESC Guidelines for the diagnosis and management of syncope. Eur Heart J. 2018;39(21):1883-1948. doi:10.1093/eurheartj/ehy037https://academic.oup.com/eurheartj/article/39/21/1883/4939241?login=false
  5. Dakkak W, Doukky R. Sick Sinus Syndrome. In: StatPearls. Treasure Island (FL): StatPearls Publishing; July 18, 2022. https://www.ncbi.nlm.nih.gov/books/NBK470599/

Continue Reading

Syncope ECG – The ABCs

ECG Interpretation in Syncope

Resident Clinical Pearl (RCP) – December 2018

Dr. Luke Taylor, FMEM PGY3 –  Dalhousie University, Saint John NB

Reviewed by Dr. David Lewis

 

What are you looking for on the ECG of the patient with syncope?

Quick review of frequently pimped question on shift!

Two approaches – One using systematic ECG analysis, the other a mnemonic.

ECG Analysis (1)

Standard format of rate, rhythm, axis, and segments (PR, QRS, QT, ST).

Method of calculating heart rate (2)

Rate: Simple — Is the patient going too fast or too slow? *Remember this easy way to check:
Rhythm: Look at leads II, VI and aVR for P waves.
Ask yourself:
Are they upright in II/VI and inverted in aVR?
Does a QRS follow every P and a P before every QRS?

If so likely sinus rhythm.

In the setting of syncope we are looking to see if there is any signs of heart block – a P wave not conducted to a QRS, especially being sure not to miss a Mobitz type II block.

Axis: Axis comes in to play when looking for more extensive conduction disease. Is there axis deviation along with a change in your PR and BBB indicating something like a trifasicular block?

Segments:

PR interval— is it looooong (heart block) or short (reentrant)?
Long has already been discussed in looking for signs of heart block, but a short PR may be indicative of Wolf-Parkinson-White or Lown-Ganong-Levine syndromes.

WPW – look for short PR and delta wave
LGL – short PR but no delta wave due to its conduction being very close to or even through the AV node and not through an accessory pathway.

QRS Morphology analyzing this for signs of Brugada, HOCM, WPW, ARVD, pericardial effusion, and BBB.

ECG findings of Brugada (3)

Type 1: Coved ST segment elevation with T wav inversion
Type 2: Saddleback ST segment elevation and upright T waves
Type 3: either above without the ST elevation

QT interval — is it looooong (R on T) or short (VT/VF risk)?
Long is >450 men, 470 women
Short < 330ms – tall peaked T waves no ST segment
Pearl for long – should be less than half the RR interval. —>

Normal relationship of R-R and QT interval (4)

 

ST segment — think MI or PE (rare causes of syncope but need to be considered)
MI – elevations or depressions

PE – Tachycardia, RV strain, T-wave inversion V1-V3, RBBB morphology, S1Q3T3

 

Mnemonic (5)

ABCDEFGHII

A — Aortic stenosis
Go back to patient and listen!
B — Brugada
C — Corrected QT
D — Delta wave
E — Epsilon wave as in Arrhythmogenic Right Ventricular Dysplasia (ARVD)

Epsilon: Small positive deflection (‘blip’) buried in the end of the QRS complex (6)

F — Fluid filled heart
Pericardial effusion, electrical alternans, low voltage throughout
G — Giant PE
H — Hypertrophy
LVH in someone who shouldn’t have it
I — Intervals
PR, QRS, QT
I — Ischemia

 


Looking for a Basic ECG Guide? See our Med Student Pearl Here:

Basic ECG Interpretation

 


 

References

  1. CanadiaEM – ECGs in Syncope https://canadiem.org/medical-concept-ecgs-in-syncope
  2. https://en.ecgpedia.org/wiki/Rate
  3. ECG Waves https://ecgwaves.com/brugada-syndrome-ecg-treatment-management
  4. https://www.healio.com/cardiology/learn-the-heart/case-questions/ecg-cases/question-3-5
  5. Hippo EM Education Shorts https://www.youtube.com/watch?v=raTTYV7_Asl
  6. https://en.ecgpedia.org/index.php?title=Arrhythmogenic_Right_Ventricular_Cardiomyopathy

 

This post was copyedited by Dr. Mandy Peach

Continue Reading

Pediatric syncope: an investigative dilemma?

Pediatric syncope: an investigative dilemma??

Resident Clinical Pearl (RCP) – February 2018

Kalen Leech-Porter R3 FMEM, Dalhousie University, Saint John, New Brunswick

Reviewed by Dr. David Lewis

 

The case

A 16 year old girl comes in by ambulance, after fainting while singing at church on a Sunday morning.  Her vitals are: HR 90, RR 16, Temp 36.5, BP 92/64. O2 Sat 99% on RA.  On arrival she is alert and looks well.  She explains that she stood up to sing, felt lightheaded and then, soon after, lost consciousness.  The paramedic lets you know witnesses say she turned ashen grey and sweaty, and was out for about 2 minutes.  She had some ‘seizure like activity for 10 seconds’ with a few twitches in different parts of her body.  The patient states she was fully recovered within a few minutes.  Family history is unremarkable, with no sudden early deaths.  Physical examination is also unremarkable.  The nurse rolls in an ECG machine to check her rhythm.

What investigations does she require?

 

Why It Matters?

Pediatric syncope is very common in the emergency setting, accounting for ~1 % of pediatric emergency visits.   Between 15 and 50% of children will have at least one syncopal event in their childhood (peaking in adolescence).  – It’s a common problem!

 

The problem?

Historically, working up pediatric syncope has varied widely.  ECG use has been routine and some centers have regularly ordered bloodwork, CTs and even EEGs.  This onslaught of testing has led to increased hospital costs, stressful false positives for patients and has not improved patient outcomes.  Plus, reading pediatric ECGs can be challenging – see the end of this pearl.

 

A potential solution

In 2017, the Canadian Cardiovascular Society and Canadian Pediatric Cardiology Association published a position statement on an approach to pediatric syncope¹  Full Article – click here

A thorough history and physical can be sufficient in low risk patients – no investigations are required for many pediatric syncope presentations. 

Red flags

  • Lack of Prodrome: warm/clammy sensation, lightheaded ness, visual changes. Having a prodrome is the most important factor in benign syncope
  • Midexertional syncope; however post exertional syncope (having an opportunity to stop) is typically benign
  • Chest Pain preceding the event
  • Prolonged loss of consciousness
  • Family history of cardiovascular disease/sudden death
  • Syncope triggered by loud noise
  • New medications (QT prolonging drugs)
  • Abnormal physical exam – pathologic murmur, sternotomy scar, neurologic deficits

 Red herrings

  • Pallor is common in vasovagal events
  • Palpitations are common in vasovagal events (although evidence around this not robust)
  • Involuntary movement is also common in vasovagal syncope. Benign movements can be a muscle twitch to violent jerks of the whole body

 

Investigative Algorithm

Figure 1. Pediatric syncope investigative algorithm, adapted from Sanatani et al. (2017)

 

The Evidence

To create this position statement, the Canadian Cardiovascular Society (CCS) performed a literature review of 4307 references, ultimately including 231 articles for full-text review.

Most of the studies referred to in the article are retrospective reviews. Therefore, recommendations in the position statement were mostly graded as ‘Strong recommendation, low level of evidence’. I found the most compelling evidence against routine ECG was the statement: “The ECG was the only indicator of cardiac disease in 5 of 480 patients (1%) and causality could not be determined”.¹  However, they did not list a reference for this statement and I’m not sure what study they drew this conclusion from.  I do feel they make a compelling case against over investigation, but as in many areas of medicine, the evidence could be more robust.

 

Pediatric ECGs – how to interpret?

The nurse hands you the ECG, what features are worrisome on a pediatric ECG?

See following chart from the CCS¹

Figure 2. Pediatric ECG findings in syncope, adapted from Sanatani et al. (2017)

In summary, red light features should prompt an emergent cardiology referral. Yellow light features should prompt a non-urgent cardiology referral while green light features are normal variants and require no further work up.

 

Case Resolution

There were no red flags, arguably she requires no investigations, not even an ECG.   Of course, clinical acumen trumps guidelines, but at least you will be CCS endorsed if you chose to not do any further investigations.

 

References

  1. Sanatani, V. Chau, A. Fournier, A. Dixon, R. Blondin, R. Sheldon. Canadian Cardiovascular Society and Canadian Pediatric Cardiology Association Position Statement on the Approach to Syncope in the Pediatric Patient. Canadian Journal of Cardiology. 2017; 33: 189-198.

 

 

This post was copyedited by Kavish Chandra @kavishpchandra

Continue Reading