
Bicuspid Aortic Valve – An important incidental PoCUS finding?
Medical Student Pearl
Khoi Thien Dao
MD Candidate – Class of 2023
Dalhousie Medicine New Brunswick
Case:
A 58-year-old male presents to Emergency Department with sudden onset of chest pain that is radiating to the back. He was also having shortness of breath at the same time of chest pain. The patient later reveals that his past medical history only consists of “bicuspid valve”, and he takes no medication. On examination, he was uncomfortable, but no signs of acute distress. His respiratory and cardiac exam were unremarkable for reduced air sound, adventitious sound, heart murmur, or extra heart sound. ECG was normal and initial cardiac markers were within normal range. His chest x-ray is normal.
You are aware that with his medical presentation and a history of bicuspid aortic valve, you need to consider associated concerning diagnosis (aortic root aneurysm and aortic dissection) within the differential (myocardial infarct, congestive heart failure, pneumonia, etc.).
Bicuspid Aortic Valve
Bicuspid aortic valve is one of the most common types of congenital heart disease that affects approximately one percent of population. There is a strong heritable component to the disease. Bicuspid aortic valve occurs when two leaflets fused (commonly right and left coronary leaflets) and form a raphe, a fibrous ridge1. The fusion of the leaflets can be partial, or complete, with the presence or absence of a raphe1. Bicuspid aortic valve disease is associated with increasing risks for valve calcification, which lead to aortic stenosis or regurgitation secondary to premature degeneration1. This congenital heart defect is also a well-known risks factor for aortic dissection and aortic dilatation. Reports have estimated prevalence of aortic dilation in patients with bicuspid aortic valve ranging between 20 to 80 percent, and that the risks of aortic dilation increase with age2. Increases risk of aortic dilatation in bicuspid valve disease also leads to a significantly greater risk for aortic dissection2.3.
The majority of patients with bicuspid aortic valve are asymptomatic with relatively normal valve function and therefore can remain undiagnosed for many years. However, most patients with bicuspid aortic valve will develop complications and eventually require valve surgery within their lifetime. Early diagnosis, while asymptomatic, can enable close follow-up for complications and early intervention with better outcomes. However, asymptomatic individuals are rarely referred for echocardiography.
With increasing use of cardiac PoCUS by Emergency Physicians, there are two scenarios where increased awareness of the appearance of bicuspid aortic valve and its complications may be of benefit.
- Known bicuspid aortic valve patients presenting with possible associated complications
- Undiagnosed bicuspid aortic valve patients presenting with unrelated symptoms undergoing routine cardiac PoCUS
This clinical pearl provides a review of the clinical approach to bicuspid aortic valve and its associated complications and provides guide to enhancing clinical assessment with PoCUS.
Clinical Approach:
Although bicuspid aortic valve commonly presents as asymptomatic, a detailed focused cardiac history can assess for clinical signs and symptoms related to valve dysfunction and its associated disease, such as reduced exercise capacity, angina, syncope, or exertional dizziness1. Information about family history with relation to cardiac disease is essential for a clinician’s suspicion of heritable cardiovascular disease. Red flag symptoms that shouldn’t be missed such as chest pain, back pain, hypertensive crisis, etc. should be specifically identified. They are indicators for possible emergent pathologies that should not be missed (for example: acute MI, aortic dissection, ruptured aortic aneurysm, etc.)
Physical examination findings in patients with bicuspid aortic valve include, but not limited to, ejection sound or click at cardiac apex/base, murmurs that have features of crescendo-decrescendo or holosystolic. Clinical signs of congestive heart failure such as dyspnea, abnormal JVP elevation, and peripheral edema may also be present.
Core Cardiac PoCUS:
With cardiac PoCUS, it is important to obtain images from different planes and windows to increase the complexity of the exam and to be able to be confidently interpreting the exam. There are four standard cardiac view that can be obtained: parasternal short axis (PSSA), parasternal long axis (PSLA), subxiphoid (sub-X), and apical 4-chamber view (A4C). Each cardiac view has specific benefits.
Parasternal Long Axis
With the PSLA, the phased-array transducer is placed to the left sternum at 3rd or 4th intercostal with transducer orientation pointing toward patient’s right shoulder. Key structures that should be seen are Aortic Valve (AV), Mitral Valve (MV), Left Ventricle (LV), pericardium, Right Ventricle (RV), Left Ventricular Outflow Tract (LVOT), and portion of ascending and descending aorta8. It is primarily used to assess left ventricular size and function, aortic and mitral valves, left atrial size8. Furthermore, pericardial effusions and left ventricular systolic function can be assessed.

Parasternal Long Axis
Parasternal Short Axis
Using the same transducer position as the PSLA the transducer can be centered to the mitral valve and rotated 90 degrees clockwise to a point where the transducer marker points to patient’s left shoulder to obtain the PSSA. With this orientation, one can assess for global LV function and LV wall motion8. Furthermore, with five different imaging planes that can be utilized with this view, aortic valve can be visualized in specific clinical contexts.

Parasternal Short Axis
Apical 4-Chamber
The apical 4-chamber view is generated by placing the transducer at the apex, which is landmarked just inferolateral to left nipple in men and underneath inferolateral of left breast in women. This view helps the clinician to assess RV systolic function and size relative to the LV8.

Apical 4-Chamber
Subxiphoid
The subxiphoid view can be visualized by placing a transducer (phased-array or curvilinear) immediately below the xiphoid process with the transducer marker points to patient’s right. The movements of rocking, tilting, and rotation are required to generate an optimal 4-chamber subcostal view. A “7” sign, which consists of visualizing the border between liver and pericardium, the septum, and the RV and LV that looks like number 7. This view allows user to assess RV functions, pericardial effusion, and valve functions8. In emergency setting, it can be used for rapid assessments in cardiac arrest, cardiac tamponade, and global LV dysfunction8.

From – the PoCUS Atlas

Subxiphoid labelled

7 Sign
PoCUS Views for Aortic Valve Assessment
In assessing the aortic valve, the PSSA and PSLA can be best used to obtain different information, depending on clinical indications. Both views can be used to assess blood flows to assess stenosis or regurgitation. However, the PSLA view includes the aorta where clinician can look for aortic valve prolapse or doming as signs of stenosis and its complications, like aortic dilatation. On the other hand, PSSA are beneficial when assessing the aortic valve anatomy.

Parasternal Long Axis
From PoCUS 101

Parasternal Short Axis
From – the PoCUS Atlas
PoCUS Appearance of Normal Aortic Valve (Tricuspid) vs Bicuspid Aortic Valve
With PSSA view, the normal aortic valve will have three uniformly leaflets that open and form a circular orifice during most of systole. During diastole, it will form a three point stars with slight thickening at central closing point. The normal aortic valve is commonly referred to as the Mercedes Benz sign.

Parasternal Short Axis – Normal Tricuspid AV – Mercedes Benz Sign and 3 cusp opening

Pitfall
However, the Mercedes Benz Sign sign can be misleading bicuspid valve disease when three commissure lines are misinterpreted due to the presence of a raphe. A raphe is a fibrous band formed when two leaflets are fused together. It is therefore important to visualize the aortic valve when closed and during opening, to ensure all 3 cusps are mobile. Visualization of The Mercedes Benz sign is not enough on its own to exclude Bicuspid Aortic Valve.

Apparent Mercedes sign when AV closed due to presence of raphe. Fish mouth appearance of the same valve when open confirming bicuspid aortic valve
Bicuspid Aortic Valve
Identification requires optimal valve visualization during opening (systole). Appearance will depend on the degree of cusp fusion. In general a ‘fish mouth’ appearance is typical for bicuspid aortic valve.

Parasternal Short Axis – Fish Mouth Opening – Fusion L & R Coronary Cusps – Bicuspid Aortic Valve
In the parasternal long axis view the aortic valve can form a dome shape during systole, and prolapse during diastole, rather than opening parallel to the aorta. This is called systolic doming. Another sign that can be seen in PSLA view is valve prolapse, when either right or non-coronary aortic valve cusps showed backward bowing towards the left ventricle beyond the attachment of the aortic valve leaflets to the annulus. This can be estimated by drawing a line joining the points of the attachment.

Systolic doming

Diastolic prolapse and systolic doming
PoCUS Appearance of the Complications of Bicuspid Valve Disease
In patients presenting with chest/back pain, shock or severe dyspnea who have either known or newly diagnosed bicuspid valve disease, PoCUS assessment for potential complications can be helpful in guiding subsequent management.
Complications of bicuspid aortic valve include aortic dilatation at root or ascending (above 3.8cm) and aortic dissection 5-9.

Dilated aortic root, from – sonomojo.com

Aortic root dilatation – Normal maximum = 40mm

Aortic root dilatation with dissection
Valve vegetations or signs of infective endocarditis are among the complications of severe bicuspid valve5-9

Aortic valve vegetations
General Management of Patients with Bicuspid Valve in the Emergency Department
Management of bicuspid aortic valve disease is dependent on the severity of the disease and associated findings.
For a patient with suspicious diagnosis of bicuspid valve disease, a further evaluation of echocardiography should be arranged, and patient should be monitored for progressive aortic valve dysfunction as well as risk of aortic aneurysm and dissection. Surgical intervention is indicated with evidence of severe aortic stenosis, regurgitation, aneurysm that is > 5.5cm, or dissection1.
How accurate is PoCUS for Aortic Valve assessment?
Bicuspid aortic valve disease is usually diagnosed with transthoracic echocardiography, when physical examination has revealed cardiac murmurs that prompt for further investigation. However, patients with bicuspid valve disease frequently remain asymptomatic for a prolonged periods. Michelena et al. (2014) suggested that auscultatory abnormalities account for 60 to 70% diagnostic echocardiograms for BAV in community10.
While there are no published studies on the utility of PoCUS for the diagnosis of bicuspid aortic valve, there are studies on the use of PoCUS as part of the general cardiac exam. Kimura (2017) published a review that reported early detection of cardiac pathology when PoCUS was used as part of the physical exam 9. Abe et al. (2013) found that PoCUS operated by expert sonographer to screen for aortic stenosis has a sensitivity of 84% and a specificity of 90% in 130 patients 11. In another study by Kobal et al. (2004), they found that PoCUS has a specificity of 93% and sensitivity of 82% in diagnosing mild regurgitation12.
There are also limitations of using PoCUS to assess for bicuspid aortic valve disease, or valve disease in general. Obtaining images from ultrasound and interpretation are highly dependent on user’s experiences to assess for the valve9. Furthermore, research is needed to investigate the use of PoCUS in lesser valvular pathology.
When a new diagnosis of bicuspid aortic valve is suspected, a formal echocardiogram should be arranged, and follow-up is recommended.
Summary
- Bicuspid aortic valve is often asymptomatic and undiagnosed until later in life
- Patients with known bicuspid aortic valve disease are closely followed and may require surgical intervention in the event of complications
- Diagnosis of bicuspid aortic valve requires careful visualization of valve closing and opening during diastole and systole
- The increased use of PoCUS by Emergency Physicians as an adjunct to cardiac examination may result in increased diagnosis of bicuspid aortic valve. These may be related to the presentation or incidental findings
- In patients presenting to the Emergency Department with known or newly diagnosed bicuspid aortic valve disease, consider if a complication is related to their presentation
- In patient with incidental finding of bicuspid aortic valve disease refer for cardiology follow up
References
- Braverman, A. C., & Cheng, A. (2013). The bicuspid aortic valve and associated aortic disease. Valvular heart disease. Philadelphia: Elsevier, 179-218.
- Verma, S., & Siu, S. C. (2014). Aortic dilatation in patients with bicuspid aortic valve. N Engl J Med, 370, 1920-1929.
- Della Corte, A., Bancone, C., Quarto, C., Dialetto, G., Covino, F. E., Scardone, M., … & Cotrufo, M. (2007). Predictors of ascending aortic dilatation with bicuspid aortic valve: a wide spectrum of disease expression. European Journal of Cardio-Thoracic Surgery, 31(3), 397-405.
- Tirrito, S. J., & Kerut, E. K. (2005). How not to miss a bicuspid aortic valve in the echocardiography laboratory. Echocardiography: A Journal of Cardiovascular Ultrasound and Allied Techniques, 22(1), 53-55.
- Baumgartner, H., Donal, E., Orwat, S., Schmermund, A., Rosenhek, R., & Maintz, D. (2015). Chapter 10: Aortic valve stenosis. The ESC textbook of cardiovascular imaging. European Society of Cardiology.
- Fowles, R. E., Martin, R. P., Abrams, J. M., Schapira, J. N., French, J. W., & Popp, R. L. (1979). Two-dimensional echocardiographic features of bicuspid aortic valve. Chest, 75(4), 434-440.
- Shapiro, L. M., Thwaites, B., Westgate, C., & Donaldson, R. (1985). Prevalence and clinical significance of aortic valve prolapse. Heart, 54(2), 179-183.
- Gebhardt, C., Hegazy, A.F., Arntfield, R. (2015). Chapter 16: Valves. Point-of-Care Ultrasound. Philadelphia: Elsevier, 119-125.
- Kimura, B. J. (2017). Point-of-care cardiac ultrasound techniques in the physical examination: better at the bedside. Heart, 103(13), 987-994.
- Michelena, H. I., Prakash, S. K., Della Corte, A., Bissell, M. M., Anavekar, N., Mathieu, P., … & Body, S. C. (2014). Bicuspid aortic valve: identifying knowledge gaps and rising to the challenge from the International Bicuspid Aortic Valve Consortium (BAVCon). Circulation, 129(25), 2691-2704.
- Abe, Y., Ito, M., Tanaka, C., Ito, K., Naruko, T., Itoh, A., … & Yoshikawa, J. (2013). A novel and simple method using pocket-sized echocardiography to screen for aortic stenosis. Journal of the American Society of Echocardiography, 26(6), 589-596.
- Kobal, S. L., Tolstrup, K., Luo, H., Neuman, Y., Miyamoto, T., Mirocha, J., … & Siegel, R. J. (2004). Usefulness of a hand-carried cardiac ultrasound device to detect clinically significant valvular regurgitation in hospitalized patients. The American journal of cardiology, 93(8), 1069-1072.
- Le Polain De Waroux, J. B., Pouleur, A. C., Goffinet, C., Vancraeynest, D., Van Dyck, M., Robert, A., … & Vanoverschelde, J. L. J. (2007). Functional anatomy of aortic regurgitation: accuracy, prediction of surgical repairability, and outcome implications of transesophageal echocardiography. Circulation, 116(11_supplement), I-264.